Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Mol Ther ; 31(3): 788-800, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36575794

RESUMEN

The COVID-19 pandemic and the need for additional safe, effective, and affordable vaccines gave new impetus into development of vaccine genetic platforms. Here we report the findings from the phase 1, first-in-human, dose-escalation study of COVID-eVax, a DNA vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Sixty-eight healthy adults received two doses of 0.5, 1, or 2 mg 28 days apart, or a single 2-mg dose, via intramuscular injection followed by electroporation, and they were monitored for 6 months. All participants completed the primary safety and immunogenicity assessments after 8 weeks. COVID-eVax was well tolerated, with mainly mild to moderate solicited adverse events (tenderness, pain, bruising, headache, and malaise/fatigue), less frequent after the second dose, and it induced an immune response (binding antibodies and/or T cells) at all prime-boost doses tested in up to 90% of the volunteers at the highest dose. However, the vaccine did not induce neutralizing antibodies, while particularly relevant was the T cell-mediated immunity, with a robust Th1 response. This T cell-skewed immunological response adds significant information to the DNA vaccine platform and should be assessed in further studies for its protective capacity and potential usefulness also in other therapeutic areas, such as oncology.


Asunto(s)
COVID-19 , Vacunas de ADN , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , Pandemias/prevención & control , SARS-CoV-2 , Vacunas de ADN/efectos adversos
3.
Oncogene ; 42(4): 293-307, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36418472

RESUMEN

BRAF-mutated melanoma relapsing after targeted therapies is an aggressive disease with unmet clinical need. Hence the need to identify novel combination therapies able to overcome drug resistance. miRNAs have emerged as orchestrators of non-genetic mechanisms adopted by melanoma cells to challenge therapies. In this context we previously identified a subset of oncosuppressor miRNAs downregulated in drug-resistant melanomas. Here we demonstrate that lipid nanoparticles co-encapsulating two of them, miR-199-5p and miR-204-5p, inhibit tumor growth both in vitro and in vivo in combination with target therapy and block the development of drug resistance. Mechanistically they act by directly reducing melanoma cell growth and also indirectly by hampering the recruitment and reprogramming of pro-tumoral macrophages. Molecularly, we demonstrate that the effects on macrophages are mediated by the dysregulation of a newly identified miR-204-5p-miR-199b-5p/CCL5 axis. Finally, we unveiled that M2 macrophages programs are molecular signatures of resistance and predict response to therapy in patients. Overall, these findings have strong translational implications to propose new combination therapies making use of RNA therapeutics for metastatic melanoma patients.


Asunto(s)
Melanoma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Melanoma/genética , Línea Celular Tumoral
4.
Sci Rep ; 11(1): 19500, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593880

RESUMEN

Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for ß-1,3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Hongos/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Animales , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Monoclonales Humanizados/aislamiento & purificación , Especificidad de Anticuerpos/inmunología , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Ingeniería Genética , Humanos , Cadenas Pesadas de Inmunoglobulina , Cadenas Ligeras de Inmunoglobulina/genética , Ratones , Pruebas de Sensibilidad Microbiana , Fagocitosis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
5.
Front Microbiol ; 12: 789774, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975811

RESUMEN

The COVID-19 pandemic has highlighted genetic vaccination as a powerful and cost-effective tool to counteract infectious diseases. Invasive fungal infections (IFI) remain a major challenge among immune compromised patients, particularly those undergoing allogeneic hematopoietic bone marrow transplantation (HSCT) or solid organ transplant (SOT) both presenting high morbidity and mortality rates. Candidiasis and Aspergillosis are the major fungal infections among these patients and the failure of current antifungal therapies call for new therapeutic aids. Vaccination represents a valid alternative, and proof of concept of the efficacy of this approach has been provided at clinical level. This review will analyze current understanding of antifungal immunology, with a particular focus on genetic vaccination as a suitable strategy to counteract these diseases.

6.
Front Pharmacol ; 10: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804788

RESUMEN

Fungal infections have aroused much interest over the last years because of their involvement in several human diseases. Immunocompromission due to transplant-related therapies and malignant cancer treatments are risk factors for invasive fungal infections, but also aggressive surgery, broad-spectrum antibiotics and prosthetic devices are frequently associated with infectious diseases. Current therapy is based on the administration of antifungal drugs, but the occurrence of resistant strains to the most common molecules has become a serious health-care problem. New antifungal agents are urgently needed and it is essential to identify fungal molecular targets that could offer alternatives for development of treatments. The fungal cell wall and plasma membrane are the most important structures that offer putative new targets which can be modulated in order to fight microbial infections. The development of monoclonal antibodies against new targets is a valid therapeutic strategy, both to solve resistance problems and to support the immune response, especially in immunocompromised hosts. In this review, we summarize currently used antifungal agents and propose novel therapeutic approaches, including new fungal molecular targets to be considered for drug development.

7.
Oncotarget ; 7(15): 19559-74, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26862736

RESUMEN

ErbB3, a member of the ErbB family receptors, has a key role in the development and progression of several cancers, including non-small cell lung cancer (NSCLC), and in the establishment of resistance to therapies, leading to the development of anti-ErbB3 therapies.In this study we demonstrated, in a set of malignant pleural effusion-derived cultures of NSCLC, the synergistic antitumor effect of a histone deacetylase inhibitor (HDACi), such as vorinostat or valproic acid (VPA), in combination with the anti-ErbB3 monoclonal antibody (MoAb) A3. Synergistic interaction was observed in 2D and in 3D cultures conditions, both in fully epithelial cells expressing all ErbB receptors, and in cells that had undergone epithelial to mesenchymal transition and expressed low levels of ErbB3. We provided evidences suggesting that differential modulation of ErbB receptors by vorinostat or VPA, also at low doses corresponding to plasma levels easily reached in treated patients, is responsible for the observed synergism. In details, we showed in epithelial cells that both vorinostat and VPA induced time- and dose-dependent down-regulation of all three ErbB receptors and of downstream signaling. On the contrary, in A3-resistant mesenchymal cells, we observed time- and dose-dependent increase of mRNA and protein levels as well as surface expression of ErbB3, paralleled by down-regulation of EGFR and ErbB2. Our results suggest that the combination of a HDACi plus an anti-ErbB3 MoAb represents a viable strategy that warrants further evaluation for the treatment of NSCLC patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Receptor ErbB-3/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacología , Immunoblotting , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptor ErbB-3/genética , Receptor ErbB-3/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ácido Valproico/farmacología , Vorinostat
8.
Oncotarget ; 7(1): 914-28, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26575422

RESUMEN

For locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC), the current clinical use of Cetuximab in chemo/radiotherapy protocols is often associated to severe systemic toxicity. Here we report in vitro data in human FaDu pharynx SCC cells, showing that inactive concentrations of biotinylated Cetuximab (bCet) become active upon anchorage to AvidinOX on the surface of tumor cells. AvidinOX-anchored bCet induces apoptosis and DNA damage as well as specific inhibition of signaling, degradation and abrogation of nuclear translocation of EGFR. In the mouse model of FaDu cancer, we show that intra-tumor injection of AvidinOX allows anti-tumor activity of an otherwise inactive, intraperitoneally delivered, low dose bCet. Consistently with in vitro data, in vivo tumor inhibition is associated to induction of apoptosis, DNA damage and reduced angiogenesis. AvidinOX is under clinical investigation for delivering radioactive biotin to inoperable tumors (ClinicalTrials.gov NCT02053324) and present data support its use for the local treatment of HNSCC in combination with systemic administration of low dose bCet.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Avidina/administración & dosificación , Biotinilación , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Cetuximab/administración & dosificación , Relación Dosis-Respuesta a Droga , Receptores ErbB/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/irrigación sanguínea , Neoplasias de Cabeza y Cuello/patología , Humanos , Immunoblotting , Inmunohistoquímica , Ratones Desnudos , Neovascularización Patológica/prevención & control , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos
9.
Oncotarget ; 6(28): 24823-41, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26208478

RESUMEN

Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma.


Asunto(s)
Anticuerpos Monoclonales/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Western Blotting , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Epítopos/inmunología , Humanos , Indoles/farmacología , MAP Quinasa Quinasa 1/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Mutación , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridonas/farmacología , Pirimidinonas/farmacología , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Sulfonamidas/farmacología , Vemurafenib , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Hum Gene Ther ; 26(6): 386-98, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25869226

RESUMEN

We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting.


Asunto(s)
Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Antígeno Carcinoembrionario/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/farmacología , Antígeno Carcinoembrionario/inmunología , Antígeno HLA-A2/genética , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
11.
Oncotarget ; 5(19): 9239-55, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25238453

RESUMEN

Lung cancer, as well as lung metastases from distal primary tumors, could benefit from aerosol treatment. Unfortunately, because of lung physiology, clearance of nebulized drugs is fast, paralleled by unwanted systemic exposure. Here we report that nebulized AvidinOX can act as an artificial receptor for biotinylated drugs. In nude and SCID mice with advanced human KRAS-mutated A549 metastatic lung cancer, pre-nebulization with AvidinOX enables biotinylated Cetuximab to control tumor growth at a dose lower than 1/25,000 the intravenous effective dose. This result correlates with a striking, specific and unpredictable effect of AvidinOX-anchored biotinylated Cetuximab, as well as Panitumumab, observed on a panel of tumor cell lines, leading to inhibition of dimerization and signalling, blockade of endocytosis, induction of massive lysosomal degradation and abrogation of nuclear translocation of EGFR. Excellent tolerability, together with availability of pharmaceutical-grade AvidinOX and antibodies, will allow rapid clinical translation of the proposed therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Avidina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Administración por Inhalación , Animales , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab , Endocitosis/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Lisosomas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Panitumumab , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Hum Gene Ther ; 24(8): 728-38, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23902422

RESUMEN

Client-owned pet dogs represent exceptional translational models for advancement of cancer research because they reflect the complex heterogeneity observed in human cancer. We have recently shown that a genetic vaccine targeting dog telomerase reverse transcriptase (dTERT) and based on adenovirus DNA electro-gene-transfer (Ad/DNA-EGT) technology can induce strong cell-mediated immune responses against this tumor antigen and increase overall survival of dogs affected by B-cell lymphosarcoma (LSA) in comparison with historical controls when combined with a cyclophosphamide, vincristine, and prednisone (COP) chemotherapy regimen. Here, we have conducted a double-arm clinical trial with an extended number of LSA patients, measured the antigen-specific immune response, and evaluated potential toxic effects of the immunotherapy along with a follow-up of patients survival for 3.5 years. The immune response was measured by enzyme-linked immunospot assay. The expression of dTERT was quantified by quantitative polymerase chain reaction. Changes in hematological parameters, local/systemic toxicity or organic dysfunction and fever were monitored over time during the treatment. dTERT-specific cell-mediated immune responses were induced in almost all treated animals. No adverse effects were observed in any dog patient that underwent treatment. The overall survival time of vaccine/COP-treated dogs was significantly increased over the COP-only cohort (>76.1 vs. 29.3 weeks, respectively, p<0.0001). There was a significant association between dTERT expression levels in LSA cells and overall survival among vaccinated patients. In conclusion, Ad/DNA-EGT-based cancer vaccine against dTERT in combination with COP chemotherapy is safe and significantly prolongs the survival of LSA canine patients. These data confirm the therapeutic efficacy of dTERT vaccine and support the evaluation of this approach for other cancer types as well as the translation of this approach to human clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/normas , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/uso terapéutico , Marcación de Gen , Linfoma de Células B/terapia , Telomerasa/genética , Telomerasa/metabolismo , Animales , Perros , Femenino , Inmunoterapia , Linfoma de Células B/mortalidad , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Supervivencia
13.
Oncotarget ; 4(8): 1253-65, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23896512

RESUMEN

Personalized therapy of advanced non-small cell lung cancer (NSCLC) has been improved by the introduction of EGFR tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib. EGFR TKIs induce dramatic objective responses and increase survival in patients bearing sensitizing mutations in the EGFR intracytoplasmic tyrosine kinase domain. However, virtually all patients develop resistance, and this is responsible for disease relapse. Hence several efforts are being undertaken to understand the mechanisms of resistance in order to develop combination treatments capable to sensitize resistant cells to EGFR TKIs. Recent studies have suggested that upregulation of another member of the EGFR receptor family, namely ErbB3 is involved in drug resistance, through increased phosphorylation of its intracytoplasmic domain and activation of PI3K/AKT signaling. In this paper we first show, by using a set of malignant pleural effusion derived cell cultures (MPEDCC) from patients with lung adenocarcinoma, that surface ErbB3 expression correlates with increased AKT phosphorylation. Antibodies against ErbB3, namely A3, which we previously demonstrated to induce receptor internalization and degradation, inhibit growth and induce apoptosis only in cells overexpressing surface ErbB3. Furthermore, combination of anti-ErbB3 antibodies with EGFR TKIs synergistically affect cell proliferation in vitro, cause cell cycle arrest, up-regulate p21 expression and inhibit tumor growth in mouse xenografts. Importantly, potentiation of gefitinib by anti-ErbB3 antibodies occurs both in de novo and in ab initio resistant cells. Anti-ErbB3 mAbs strongly synergize also with the dual EGFR and HER2 inhibitor lapatinib. Our results suggest that combination treatment with EGFR TKI and antibodies against ErbB3 should be a promising approach to pursue in the clinic.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Quinazolinas/farmacología , Adenocarcinoma/enzimología , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Anticuerpos Monoclonales/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Gefitinib , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/administración & dosificación , Quinazolinas/administración & dosificación , Distribución Aleatoria , Receptor ErbB-3/biosíntesis , Receptor ErbB-3/inmunología , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Transl Med ; 11: 180, 2013 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-23890105

RESUMEN

BACKGROUND: Treatment of advanced melanoma has been improved with the advent of the BRAF inhibitors. However, a limitation to such treatment is the occurrence of resistance. Several mechanisms have been identified to be responsible for the development of resistance, either MEK-dependent or MEK-independent. In order to overcome resistance due to reactivation of MEK signaling, MEK inhibitors are being clinically developed with promising results. However, also in this case resistance inevitably occurs. It has been recently reported that ErbB3, a member of the EGFR receptor family, may be involved in the establishment of drug resistance. METHODS: Three melanoma cell lines were tested: LOX IMVI (BRAF V600E), MST-L (BRAF V600R) and WM266 (BRAF V600D). Phosphorylation of Receptor Tyrosine Kinases (RTKs) was assessed by an RTK array. Western blot analysis was performed on total protein extracts using anti-ErbB3, anti-AKT and anti-ERK 1/2 antibodies. The expression of neuregulin after vemurafenib treatment was assessed by Real Time PCR and Western blotting. The growth inhibitory effects of vemurafenib, GSK1120212b and/or anti-ErbB3 mAbs were evaluated by in vitro colony formation assays. RESULTS: In the present study we demonstrate that ErbB3 is the main RTK undergoing rapidly hyperphosphorylation upon either treatment with a BRAF inhibitor or with a MEK inhibitor in a panel of melanoma cell lines harboring a variety of V600BRAF mutations and that this results in a strong activation of phospho-AKT. Importantly, ErbB3 activation is fully abrogated by the simultaneous use of anti-ErbB3 monoclonal antibodies, which are also shown to potently synergize with BRAF inhibitors in the inactivation of both AKT and ERK pathways and in the inhibition of melanoma cell growth. We show that upregulation of phospho-ErbB3 is due to an autocrine loop involving increased transcription and production of neuregulin by melanoma cells. CONCLUSIONS: On the basis of these results, we propose that initial co-treatment with BRAF and/or MEK inhibitors and anti-ErbB3 antibodies should be pursued as a strategy to reduce the ErbB3-dependent feedback survival mechanism and enhance duration of clinical response.


Asunto(s)
Anticuerpos/farmacología , MAP Quinasa Quinasa 1/metabolismo , Melanoma/metabolismo , Melanoma/terapia , Proteínas Proto-Oncogénicas c-raf/metabolismo , Receptor ErbB-3/metabolismo , Neoplasias Cutáneas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
15.
J Cell Biochem ; 114(7): 1665-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23386399

RESUMEN

Dietary agents are receiving much attention for the chemoprevention of cancer. While curcumin is known to influence several pathways and affect tumor growth in vivo, carnitin and its congeners play a variety of important metabolic functions: are involved in the oxydation of long-chain fatty acids, regulate acyl-CoA levels and influence protein activity and stability by modifying the extent of protein acetylation. In this study we evaluated the efficacy of carnitines in the prevention of cancer development using the 1,2,-dimethylhydrazine (DMH)-induced colon carcinogenesis model. We also assessed whether their combination was able to give rise to increased protection from cancer development. Mice treated with DMH were dosed orally with curcumin and/or carnitine and acylcarnitines for 20 weeks. At the end of the treatment colon samples were collected, and scored for multiple ACF and adenomas. We observed that carnitine and acyl-carnitines had same, if not higher, efficacy than curcumin alone in inhibiting the formation of neoplastic lesions induced by DMH treatment. Interestingly, the combination of curcumin and acetyl-L-carnitine was able to fully inhibit the development of advanced adenoma lesions. Our data unveil the antitumor effects of carnitines and warrant additional studies to further support the adoption of carnitines as cancer chemopreventative agents.


Asunto(s)
1,2-Dimetilhidrazina/toxicidad , Carnitina/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Acetilcarnitina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/química , Neoplasias del Colon/metabolismo , Curcumina/uso terapéutico , Células HT29 , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C
16.
J Cell Physiol ; 228(1): 58-64, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22552964

RESUMEN

The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention.


Asunto(s)
Cinesinas/metabolismo , Neoplasias Experimentales/terapia , ARN Interferente Pequeño , Animales , Línea Celular Tumoral , Electroporación , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes , Humanos , Cinesinas/genética , Masculino , Melanoma , Ratones , Ratones Desnudos , Neoplasias Ováricas , Interferencia de ARN
17.
Lab Anim ; 46(4): 280-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23097560

RESUMEN

Mice harbouring a humanized liver represent a powerful tool for translating preclinical studies of drug metabolism and pharmacokinetics into humans, as well as the exploitation of basic studies on liver pathophysiology including hepatitis C virus (HCV) infection. Human adult stem cells injected into immunocompetent mice at preimmune stages of development, generate chimeric animals harbouring a liver with relatively discrete foci of human hepatocyte-like cells. In this study, we have evaluated whether similar protocol of xenotransplantation in the presence of selective pressure might lead to a higher human-into-mouse liver repopulation, leading to a relevant improvement of liver function. Human CD34(+)/CD133(+) cells were microinjected into blastocysts from genetically-modified mice committed to develop a lethal hepatopathy, due to the absence of the enzyme fumarylacetoacetate hydrolase (FAH). Following xenotransplantation, mouse survival was followed over time and histochemical evidence of liver chimerism was assessed. The survival expectancy of seven out of 21 intrablastocyst xenotransplanted FAH knockout (Fah-/-) mice was significantly higher as compared with non-xenotransplanted mice. Several nodules of human hepatocyte-like cells were revealed by immunohistochemistry in the liver of rescued mice. Our data positively support the hypothesis that preimmune xenotransplantation of human stem cells into immunocompetent mice harbouring a lethal hepatic disease might lead to a functionally relevant human-mouse liver chimerism and marks a significant advancement towards the establishment of a novel translational preclinical model for liver diseases.


Asunto(s)
Modelos Animales de Enfermedad , Hepatocitos/citología , Hepatocitos/fisiología , Hepatopatías/prevención & control , Hígado/embriología , Células Madre/citología , Trasplante Heterólogo/métodos , Animales , Blastocisto , Diferenciación Celular , Proliferación Celular , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Femenino , Hidrolasas/deficiencia , Hidrolasas/genética , Inmunocompetencia , Inyecciones/métodos , Hígado/citología , Hígado/fisiología , Hepatopatías/embriología , Ratones , Ratones Noqueados , Quimera por Trasplante
18.
Oncotarget ; 3(8): 744-58, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22889873

RESUMEN

In the last 3-5 years strong evidence has been gathered demonstrating ErbB3 as a key node for the progression of several cancer types. From the mechanistic standpoint the intracellular region of this receptor is rich of tyrosine residues that, upon phosphorylation, become high affinity binding sites for PI3K and other proteins involved in signal transduction. The involvement of ErbB3 occurs at different levels, most likely as a consequence of its promiscuity in the interaction with other RTKs of the same or other families. Several efforts are therefore being put in the development of antibodies that target this receptor either singly or in combination with other synergizing receptors. Some of these compounds have already entered clinical development. Although clinical proof-of-concept has not yet been achieved, this is likely to occur soon and will further accelerate the inclusion of anti-ErbB3 monoclonals in the repertoire of anticancer agents for more effective combination therapy. In this paper we review the wealth of anti-ErbB3 antibodies under development and compare their properties and potential to become marketed drugs.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias/terapia , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Ratones , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
19.
Cell Cycle ; 11(7): 1455-67, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22421160

RESUMEN

Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Melanoma/metabolismo , Melanoma/patología , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Endocitosis , Receptores ErbB/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal
20.
J Cell Physiol ; 227(10): 3381-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22213458

RESUMEN

The role of the ErbB3 receptor in signal transduction is to augment the signaling repertoire of active heterodimeric ErbB receptor complexes through activating the PI3K/AKT pathway, which in turn promotes survival and proliferation. ErbB3 has recently been proposed to be involved in acquired resistance to tyrosine kinase inhibitors (TKIs), and is therefore a promising new drug cancer target. Since ErbB3 is a kinase defective receptor, it cannot be targeted by small molecule inhibitors, whereas monoclonal antibodies may offer a viable strategy for pharmacological intervention. In this study, we have utilized DNA electroporation (DNA-EP) to generate a set of novel hybridomas directed against human ErbB3, which have been characterized for their biochemical and functional properties and selected for their ability to negatively regulate the ErbB3-mediated signaling pathway. In vitro, the anti-ErbB3 antibodies modulate the growth rate of cancer cells of different origins. In vivo they show antitumoral properties in a xenograft model of human pancreatic tumor and in the ErbB2-driven carcinogenesis genetically engineered mouse model (GEMM) for mammary tumor, the BALB/neuT. Our data confirm that downregulating the ErbB3-mediated signals with the use of anti-ErbB3 monoclonal antibodies is both feasible and relevant for therapeutic purposes and provides new opportunities for novel anti-ErbB3 combinatory strategies for cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-3/antagonistas & inhibidores , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Transducción de Señal/efectos de los fármacos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA