Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 42(9): e111494, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36919984

RESUMEN

Tumor growth is influenced by a complex network of interactions between multiple cell types in the tumor microenvironment (TME). These constrained conditions trigger the endoplasmic reticulum (ER) stress response, which extensively reprograms mRNA translation. When uncontrolled over time, chronic ER stress impairs the antitumor effector function of CD8 T lymphocytes. How cells promote adaptation to chronic stress in the TME without the detrimental effects of the terminal unfolded protein response (UPR) is unknown. Here, we find that, in effector CD8 T lymphocytes, RNA-binding protein CPEB4 constitutes a new branch of the UPR that allows cells to adapt to sustained ER stress, yet remains decoupled from the terminal UPR. ER stress, induced during CD8 T-cell activation and effector function, triggers CPEB4 expression. CPEB4 then mediates chronic stress adaptation to maintain cellular fitness, allowing effector molecule production and cytotoxic activity. Accordingly, this branch of the UPR is required for the antitumor effector function of T lymphocytes, and its disruption in these cells exacerbates tumor growth.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias , Humanos , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Neoplasias/metabolismo , Linfocitos T CD8-positivos/metabolismo , Adaptación Fisiológica , Microambiente Tumoral , Proteínas de Unión al ARN/metabolismo
2.
J Environ Manage ; 321: 115836, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994966

RESUMEN

The circular economy and bioeconomy can contribute to transitioning towards more sustainable production and consumption in the olive oil sector. This article is the first to analyse multi-actor strategies and multi-level socio-economic conditions for olive oil waste and by-product valorisation in the Mediterranean area using circular bioeconomy principles. Government policies, the strategies of corporations and farmers and consumers' perceptions are discussed, and various methods are applied, such as desk reviews, case studies and quantitative and qualitative surveys. The findings show strong aspirations for improved sustainability in the olive industry. Furthermore, waste and by-product valorisation strategies foster the creation of innovative practices. However, a common regulatory framework, public financial measures, new circular business models using innovative technologies, multi-actor collaboration and increased consumer awareness of the circular economy and new olive oil waste-based products are necessary for more efficient and sustainable use of olive resources. The policy and management recommendations presented in this study may aid in improving and innovating frameworks and practices for better sustainable management of valuable olive resources.


Asunto(s)
Olea , Residuos , Agricultores , Humanos , Industrias , Aceite de Oliva
3.
Elife ; 112022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442882

RESUMEN

Chronic inflammation is a major cause of disease. Inflammation resolution is in part directed by the differential stability of mRNAs encoding pro-inflammatory and anti-inflammatory factors. In particular, tristetraprolin (TTP)-directed mRNA deadenylation destabilizes AU-rich element (ARE)-containing mRNAs. However, this mechanism alone cannot explain the variety of mRNA expression kinetics that are required to uncouple degradation of pro-inflammatory mRNAs from the sustained expression of anti-inflammatory mRNAs. Here, we show that the RNA-binding protein CPEB4 acts in an opposing manner to TTP in macrophages: it helps to stabilize anti-inflammatory transcripts harboring cytoplasmic polyadenylation elements (CPEs) and AREs in their 3'-UTRs, and it is required for the resolution of the lipopolysaccharide (LPS)-triggered inflammatory response. Coordination of CPEB4 and TTP activities is sequentially regulated through MAPK signaling. Accordingly, CPEB4 depletion in macrophages impairs inflammation resolution in an LPS-induced sepsis model. We propose that the counterbalancing actions of CPEB4 and TTP, as well as the distribution of CPEs and AREs in their target mRNAs, define transcript-specific decay patterns required for inflammation resolution. Thus, these two opposing mechanisms provide a fine-tuning control of inflammatory transcript destabilization while maintaining the expression of the negative feedback loops required for efficient inflammation resolution; disruption of this balance can lead to disease.


Asunto(s)
Macrófagos , Estabilidad del ARN , Proteínas de Unión al ARN , Tristetraprolina , Regiones no Traducidas 3' , Humanos , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
4.
iScience ; 25(2): 103790, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243213

RESUMEN

Upon tissue injury, cytokine expression reprogramming transiently remodels the inflammatory immune microenvironment to activate repair processes and subsequently return to homeostasis. However, chronic inflammation induces permanent changes in cytokine production which exacerbate tissue damage and may even favor tumor development. Here, we address the contribution of post-transcriptional regulation, by the RNA-binding protein CPEB4, to intestinal immune homeostasis and its role in inflammatory bowel diseases (IBD) and colorectal cancer (CRC) development. We found that intestinal damage induces CPEB4 expression in adaptive and innate immune cells, which is required for the translation of cytokine mRNA(s) such as the one encoding interleukin-22. Accordingly, CPEB4 is required for the development of gut-associated lymphoid tissues and to maintain intestinal immune homeostasis, mediating repair and remodeling after acute inflammatory tissue damage and promoting the resolution of intestinal inflammation. CPEB4 is chronically overexpressed in inflammatory cells in patients with IBD and in CRC, favoring tumor development.

5.
Sci Adv ; 6(20): eaax3868, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32440535

RESUMEN

Organogenesis is directed by coordinated cell proliferation and differentiation programs. The hierarchical networks of transcription factors driving mammary gland development and function have been widely studied. However, the contribution of posttranscriptional gene expression reprogramming remains largely unexplored. The 3' untranslated regions of messenger RNAs (mRNAs) contain combinatorial ensembles of cis-regulatory elements that define transcript-specific regulation of protein synthesis through their cognate RNA binding proteins. We analyze the contribution of the RNA binding cytoplasmic polyadenylation element-binding (CPEB) protein family, which collectively regulate mRNA translation for about 30% of the genome. We find that CPEB2 is required for the integration of hormonal signaling by controlling the protein expression from a subset of ER/PR- regulated transcripts. Furthermore, CPEB2 is critical for the development of ER-positive breast tumors. This work uncovers a previously unknown gene expression regulation level in breast morphogenesis and tumorigenesis, coordinating sequential transcriptional and posttranscriptional layers of gene expression regulation.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Regiones no Traducidas 3' , Neoplasias de la Mama/genética , Femenino , Hormonas , Humanos , Glándulas Mamarias Humanas/metabolismo , Organogénesis , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA