Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biomed Pharmacother ; 168: 115814, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918256

RESUMEN

Recently, our group identified serine-protease hepsin from primary tumor as a biomarker of metastasis and thrombosis in patients with localized colorectal cancer. We described hepsin promotes invasion and thrombin generation of colorectal cancer cells in vitro and in vivo and identified venetoclax as a hepsin inhibitor that suppresses these effects. Now, we aspire to identify additional hepsin inhibitors, aiming to broaden the therapeutic choices for targeted intervention in colorectal cancer. METHODS: We developed a virtual screening based on molecular docking between the hepsin active site and 2000 compounds from DrugBank. The most promising drug was validated in a hepsin activity assay. Subsequently, we measured the hepsin inhibitor effect on colorectal cancer cells with basal or overexpression of hepsin via wound-healing, gelatin matrix invasion, and plasma thrombin generation assays. Finally, a zebrafish model determined whether hepsin inhibition reduced the invasion of colorectal cancer cells overexpressing hepsin. RESULTS: Suramin was the most potent hepsin inhibitor (docking score: -11.9691 Kcal/mol), with an IC50 of 0.66 µM. In Caco-2 cells with basal or overexpression of hepsin, suramin decreased migration and significantly reduced invasion and thrombin generation. Suramin did not reduce the thrombotic phenotype in the hepsin-negative colorectal cancer cells HCT-116 and DLD-1. Finally, suramin significantly reduced the in vivo invasion of Caco-2 cells overexpressing hepsin. CONCLUSION: Suramin is a novel hepsin inhibitor that reduces its protumorigenic and prothrombotic effects in colorectal cancer cells. This suggests the possibility of repurposing suramin and its derivatives to augment the repertoire of molecular targeted therapies against colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Tripanosomiasis , Animales , Humanos , Suramina/farmacología , Suramina/uso terapéutico , Trombina , Células CACO-2 , Simulación del Acoplamiento Molecular , Pez Cebra , Fenotipo , Neoplasias Colorrectales/tratamiento farmacológico
2.
Front Mol Biosci ; 10: 1182925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275957

RESUMEN

Introduction: Hepsin is a type II transmembrane serine protease and its expression has been linked to greater tumorigenicity and worse prognosis in different tumors. Recently, our group demonstrated that high hepsin levels from primary tumor were associated with a higher risk of metastasis and thrombosis in localized colorectal cancer patients. This study aims to explore the molecular role of hepsin in colorectal cancer. Methods: Hepsin levels in plasma from resected and metastatic colorectal cancer patients were analyzed by ELISA. The effect of hepsin levels on cell migration, invasion, and proliferation, as well as on the activation of crucial cancer signaling pathways, was performed in vitro using colorectal cancer cells. A thrombin generation assay determined the procoagulant function of hepsin from these cells. A virtual screening of a database containing more than 2000 FDA-approved compounds was performed to screen hepsin inhibitors, and selected compounds were tested in vitro for their ability to suppress hepsin effects in colorectal cancer cells. Xenotransplantation assays were done in zebrafish larvae to study the impact of venetoclax on invasion promoted by hepsin. Results: Our results showed higher plasma hepsin levels in metastatic patients, among which, hepsin was higher in those suffering thrombosis. Hepsin overexpression increased colorectal cancer cell invasion, Erk1/2 and STAT3 phosphorylation, and thrombin generation in plasma. In addition, we identified venetoclax as a potent hepsin inhibitor that reduced the metastatic and prothrombotic phenotypes of hepsin-expressing colorectal cancer cells. Interestingly, pretreatment with Venetoclax of cells overexpressing hepsin reduced their invasiveness in vivo. Discussion: Our results demonstrate that hepsin overexpression correlates with a more aggressive and prothrombotic tumor phenotype. Likewise, they demonstrate the antitumor role of venetoclax as a hepsin inhibitor, laying the groundwork for molecular-targeted therapy for colorectal cancer.

3.
Cancers (Basel) ; 14(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35804878

RESUMEN

Hepsin is a type II transmembrane serine protease whose deregulation promotes tumor invasion by proteolysis of the pericellular components. In colorectal cancer, the implication of hepsin is unknown. Consequently, we aimed to study the correlations between hepsin expression and different clinical-histopathological variables in 169 patients with localized colorectal cancer and 118 with metastases. Tissue microarrays were produced from samples at diagnosis of primary tumors and stained with an anti-hepsin antibody. Hepsin expression was correlated with clinical-histopathological variables by using the chi-square and Kruskal−Wallis tests, Kaplan−Meier and Aalen−Johansen estimators, and Cox and Fine and Gray multivariate models. In localized cancer patients, high-intensity hepsin staining was associated with reduced 5-year disease-free survival (p-value = 0.16). Medium and high intensity of hepsin expression versus low expression was associated with an increased risk of metastatic relapse (hazard ratio 2.83, p-value = 0.035 and hazard ratio 3.30, p-value = 0.012, respectively), being a better prognostic factor than classic histological variables. Additionally, in patients with localized tumor, 5-year thrombosis cumulative incidence increased with the increment of hepsin expression (p-value = 0.038). Medium and high intensities of hepsin with respect to low intensity were associated with an increase in thrombotic risk (hazard ratio 7.71, p-value = 0.043 and hazard ratio 9.02, p-value = 0.028, respectively). This relationship was independent of previous tumor relapse (p-value = 0.036). Among metastatic patients, low hepsin expression was associated with a low degree of tumor differentiation (p-value < 0.001) and with major metastatic dissemination (p-value = 0.023). Hepsin is a potential thrombotic and metastatic biomarker in patients with localized colorectal cancer. In metastatic patients, hepsin behaves in a paradoxical way with respect to differentiation and invasion processes.

4.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269938

RESUMEN

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Enoxaparina/farmacología , Furina/antagonistas & inhibidores , Espermina/análogos & derivados , Zeaxantinas/farmacología , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/metabolismo , COVID-19/transmisión , COVID-19/virología , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Enoxaparina/química , Enoxaparina/metabolismo , Furina/química , Furina/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteolisis , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Espermina/química , Espermina/metabolismo , Espermina/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Replicación Viral , Zeaxantinas/química , Zeaxantinas/metabolismo
5.
Biomedicines ; 10(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35052827

RESUMEN

Advanced gastric cancer is one of the most thrombogenic neoplasms. However, genetic mechanisms underlying this complication remain obscure, and the molecular and histological heterogeneity of this neoplasm hinder the identification of thrombotic biomarkers. Therefore, our main objective was to identify genes related to thrombosis regardless of Lauren subtypes. Furthermore, in a secondary exploratory study, we seek to discover thrombosis-associated genes that were specific to each TCGA molecular subtype. We designed a nested case-control study using the cohort of the AGAMENON national advanced gastric cancer registry. Ninety-seven patients were selected-48 with and 49 without venous thromboembolism (using propensity score matching to adjust for confounding factors)-and a differential gene expression array stratified by Lauren histopathological subtypes was carried out in primary tumor samples. For the secondary objective, the aforementioned differential expression analysis was conducted for each TCGA group. Fifteen genes were determined to be associated with thrombosis with the same expression trend in both the intestinal and diffuse subtypes. In thrombotic subjects, CRELD1, KCNH8, CRYGN, MAGEB16, SAA1, ARL11, CCDC169, TRMT61A, RIPPLY3 and PLA2G6 were underexpressed (adjusted-p < 0.05), while PRKD3, MIR5683, SDCBP, EPS8 and CDC45 were overexpressed (adjusted-p < 0.05), and correlated, by logistic regression, with lower or higher thrombotic risk, respectively, in the overall cohort. In each TCGA molecular subtype, we identified a series of genes differentially expressed in thrombosis that appear to be subtype-specific. We have identified several genes associated with venous thromboembolism in advanced gastric cancer that are common to Lauren intestinal and diffuse subtypes. Should these genetic factors be validated in the future, they could be complemented with existing clinical models to bolster the ability to predict thrombotic risk in individuals with advanced gastric adenocarcinoma.

6.
Eur J Cancer ; 161: 79-89, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933154

RESUMEN

INTRODUCTION: The mechanism of action of immune checkpoints inhibitors hinders the writing of rational statistical analysis plans for phase III randomised clinical trials (RCTs) because of their unpredictable dynamic effects. The purpose is to illustrate the advantages of Bayesian reporting of treatment efficacy analysis in immunotherapy RCTs, in contrast to frequentist reporting. METHOD: Fourteen RCTs (one with two pairwise comparisons) that failed to achieve their primary objective (overall survival, OS) were selected. These RCTs were reanalysed using Bayesian Cox models with dynamic covariate coefficients and time-invariant models. RESULTS: The RCTs that met inclusion criteria were 7 lung cancer trials, various other tumours, with antiPD1, antiPDL1 or antiCTLA4 therapies. The minimum detectable effect (δS) was superior to the true benefit observed in all cases, in conditions of non-proportional hazards. Schoenfeld tests indicated the existence of PH assumption violations (p<0.05) in 6/15 cases. The Bayesian Cox models revealed a probability of benefit >79% in all the RCTs, with the therapeutic equivalence hypothesis unlikely. The OS curves diverged after a median of 9.1 months. Since the divergency, no non-proportionality was evinced in 13/15, while the Wald tests achieved p<0.05 in 12/15 datasets. In all cases, the Bayesian Cox models with dynamic coefficients detected fluctuations of the hazard ratio, and increased 2-year OS was the most likely hypothesis. CONCLUSION: We recommend progressively implementing Bayesian and dynamic analyses in all RCTs of immunotherapy to interpret and assess the credibility of frequentist results.


Asunto(s)
Inmunoterapia/métodos , Teorema de Bayes , Humanos
7.
Biomedicines ; 9(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067120

RESUMEN

Antithrombin, the main physiological inhibitor of the coagulation cascade, exerts anti-tumor effects on glioblastoma multiforme cells. Antithrombin has different conformations: native, heparin-activated, prelatent, latent, and cleaved. The prelatent form has an intermediate affinity between latent and native antithrombin, although it is the most antiangiogenic form. Herein, we investigate the effect of this conformation on the tumorigenic processes of glioblastoma multiforme cells. Antithrombin forms were purified by chromatography. Chromogenic/fluorogenic assays were carried out to evaluate enteropeptidase and hepsin inhibition, two serine proteases involved in these processes. Wound healing, Matrigel invasion and BrdU incorporation assays were performed to study migration, invasion and proliferation. E-cadherin, Vimentin, VEGFA, pAKT, STAT3, pSTAT3, and pERK1/2 expression was assessed by Western blot and/or qRT-PCR. Prelatent antithrombin inhibited both enteropeptidase and hepsin, although it was less efficient than the native conformation. Exposure to prelatent antithrombin significantly reduced migration and invasion but not proliferation of U-87 MG, being the conformation most efficient on migration. Prelatent antithrombin down-regulated VEGFA, pSTAT3, and pERK1/2 expression in U-87 MG cells. Our work elucidates that prelatent antithrombin has surprisingly versatile anti-tumor properties in U-87 MG glioblastoma multiforme cells. This associates with resistance pathway activation, the decreased expression of tumorigenic proteins, and increased angiogenesis, postulating the existence of a new, formerly unknown receptor with potential therapeutic implications.

8.
Thromb Res ; 183: 80-85, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31671376

RESUMEN

INTRODUCTION: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease in which patients are at increased risk of thrombosis. The mechanisms underlying the associated thrombosis risk are still poorly understood, although it is known that Eculizumab, the drug of choice for symptomatic patients, prevents thrombotic events. Exosomes are extracellular vesicles that can carry and disseminate genetic material, tumor biomarkers and inflammatory mediators. To date, the metabolite cargo of plasma exosomes from PNH patients has not yet been explored. In this pilot trial, we compared the metabolome of plasma exosomes from PNH patients with that of healthy subjects in order to provide further insights into this rare disease. RESULTS: We used a non-targeted metabolomics approach with UPLC-ESI-QTOF-MS/MS and GC-MS platforms. Multivariate analyses revealed the differential occurrence (p < .001) of 78 metabolites in plasma exosomes from PNH patients vs healthy control subjects. Remarkably, prostaglandin F2-alpha (6.1-fold), stearoyl arginine (5.3-fold) and 26-hydroxycholesterol-3-sulfate (11.2-fold) were higher in PNH patients vs healthy controls (p < .001). CONCLUSIONS: This is the first description on the differential metabolite cargo occurring in plasma exosomes from PNH patients. Our results could contribute to the search for possible prognostic biomarkers of thrombotic risk in patients with PNH. Further research in a larger cohort to validate these results is warranted.


Asunto(s)
Exosomas/fisiología , Hemoglobinuria Paroxística/genética , Metaboloma/fisiología , Trombosis/etiología , Adolescente , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto
9.
Biochimie ; 165: 245-249, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31445073

RESUMEN

Antithrombin is a serine protease inhibitor that exerts a crucial role in hemostasis as the main inhibitor of the coagulation cascade. It plays also critical roles in other processes, such as inflammation and cancer. Here we show that exosomes released by Madin-Darby canine kidney (MDCK) cells cultured in the presence of heparin incorporate antithrombin from the serum. Exosomal antithrombin is found complexed with the serine protease high temperature requirement A1 (HTRA1), whose cellular levels are increased after serum deprival, the condition used to collect exosomes. Although the biological relevance of the presence of antithrombin in exosomes remains to be investigated, our results suggest a functional interplay between antithrombin and HTRA1.


Asunto(s)
Antitrombinas/metabolismo , Coagulación Sanguínea/fisiología , Exosomas/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Animales , Perros , Heparina/química , Células de Riñón Canino Madin Darby
11.
PLoS One ; 11(6): e0157834, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322195

RESUMEN

Heparanase is an endoglycosidase that participates in morphogenesis, tissue repair, heparan sulphates turnover and immune response processes. It is over-expressed in tumor cells favoring the metastasis as it penetrates the endothelial layer that lines blood vessels and facilitates the metastasis by degradation of heparan sulphate proteoglycans of the extracellular matrix. Heparanase may also affect the hemostatic system in a non-enzymatic manner, up-regulating the expression of tissue factor, which is the initiator of blood coagulation, and dissociating tissue factor pathway inhibitor on the cell surface membrane of endothelial and tumor cells, thus resulting in a procoagulant state. Trying to check the effect of heparanase on heparin, a highly sulphated glycosaminoglycan, when it activates antithrombin, our results demonstrated that heparanase, but not proheparanase, interacted directly with antithrombin in a non-covalent manner. This interaction resulted in the activation of antithrombin, which is the most important endogenous anticoagulant. This activation mainly accelerated FXa inhibition, supporting an allosteric activation effect. Heparanase bound to the heparin binding site of antithrombin as the activation of Pro41Leu, Arg47Cys, Lys114Ala and Lys125Alaantithrombin mutants was impaired when it was compared to wild type antithrombin. Intrinsic fluorescence analysis showed that heparanase induced an activating conformational change in antithrombin similar to that induced by heparin and with a KD of 18.81 pM. In conclusion, under physiological pH and low levels of tissue factor, heparanase may exert a non-enzymatic function interacting and activating the inhibitory function of antithrombin.


Asunto(s)
Antitrombinas/metabolismo , Glucuronidasa/farmacología , Heparina/metabolismo , Antitrombinas/química , Sitios de Unión , Activación Enzimática/efectos de los fármacos , Factor Xa/metabolismo , Glucuronidasa/química , Humanos , Cinética , Modelos Moleculares , Péptido Hidrolasas/metabolismo , Unión Proteica/efectos de los fármacos
12.
Sci Rep ; 6: 27544, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27270881

RESUMEN

Antithrombin is a key inhibitor of the coagulation cascade, but it may also function as an anti-inflammatory, anti-angiogenic, anti-viral and anti-apoptotic protein. Here, we report a novel function of antithrombin as a modulator of tumor cell migration and invasion. Antithrombin inhibited enteropeptidase on the membrane surface of HT-29, A549 and U-87 MG cells. The inhibitory process required the activation of antithrombin by heparin, and the reactive center loop and the heparin binding domain were essential. Surprisingly, antithrombin non-covalently inhibited enteropeptidase, revealing a novel mechanism of inhibition for this serpin. Moreover, as a consequence of this inhibition, antithrombin was cleaved, resulting in a molecule with anti-angiogenic properties that reduced vessel-like formation of endothelial cells. The addition of antithrombin and heparin to U-87 MG and A549 cells reduced motility in wound healing assays, inhibited the invasion in transwell assays and the degradation of a gelatin matrix mediated by invadopodia. These processes were controlled by enteropeptidase, as demonstrated by RNA interference experiments. Carcinoma cell xenografts in nude mice showed in vivo co-localization of enteropeptidase and antithrombin. Finally, treatment with heparin reduced experimental metastasis induced by HT29 cells in vivo. In conclusion, the inhibition of enteropeptidase by antithrombin may have a double anti-tumor effect through inhibiting a protease involved in metastasis and generating an anti-angiogenic molecule.


Asunto(s)
Antitrombinas/administración & dosificación , Enteropeptidasa/genética , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Células A549 , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Células HT29 , Humanos , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Unión Proteica , Conformación Proteica
13.
PLoS One ; 8(5): e64998, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23705025

RESUMEN

The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins.


Asunto(s)
Antitrombinas/metabolismo , Glicoproteínas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Adulto , Antitrombinas/sangre , Estudios de Casos y Controles , Factor Xa/metabolismo , Femenino , Silenciador del Gen , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Glicómica , Células HEK293 , Haplotipos/genética , Células Hep G2 , Humanos , Masculino , Proteómica , Reproducibilidad de los Resultados
14.
Thromb Haemost ; 104(6): 1143-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20838745

RESUMEN

Citrullination is a post-translational modification that plays essential roles in both physiological processes and disease. Recent studies have found increased levels of citrullinated antithrombin in patients with rheumatoid arthritis and in different malignant tumours. Antithrombin, the main haemostatic serpin, loses its anticoagulant function via citrullination, which might contribute to the pathogenesis or thrombotic side effects of these disorders. We have developed a specific monoclonal antibody against citrullinated antithrombin. We determined the levels of citrullinated antithrombin and anti-FXa activity in plasma from 66 donors, 17 patients with rheumatoid arthritis and 77 patients with colorectal adenocarcinoma (42 suffering from venous thrombosis). Healthy subjects had negligible amounts of citrullinated antithrombin in plasma (7.9 ± 22.1 ng/ml), while it significantly increased in patients with rheumatoid arthritis or adenocarcinoma (159.7 ± 237.6 ng/ml and 36.8 ± 66.1 ng/ml), levels that, however, did not modify the plasma anticoagulant activity. Moreover, we did not find association between citrullinated antithrombin and the thrombotic risk in patients with adenocarcinoma. In conclusion, we have developed an antibody specific for citrullinated antithrombin that allows its quantification in biological samples, offering a new tool for the analysis of citrullination in different diseases. We confirm increased levels of citrullinated antithrombin in plasma of patients with rheumatoid arthritis and adenocarcinoma. This modification, probably local, could have pathological consequences in both disorders, but only affects a minor fraction of plasma antithrombin, resulting in no significant reduction of global anticoagulant activity. This result explains the absence of association of this marker with an increased risk of thrombosis in patients with colorectal adenocarcinoma.


Asunto(s)
Adenocarcinoma/sangre , Anticuerpos Monoclonales/inmunología , Antitrombinas/sangre , Artritis Reumatoide/sangre , Citrulina/sangre , Neoplasias Colorrectales/sangre , Ensayo de Inmunoadsorción Enzimática , Adenocarcinoma/complicaciones , Anticuerpos Monoclonales/biosíntesis , Especificidad de Anticuerpos , Antitrombinas/inmunología , Biomarcadores/sangre , Coagulación Sanguínea , Citrulina/inmunología , Neoplasias Colorrectales/complicaciones , Inhibidores del Factor Xa , Humanos , Procesamiento Proteico-Postraduccional , Regulación hacia Arriba , Trombosis de la Vena/sangre , Trombosis de la Vena/etiología
15.
Thromb Res ; 124(4): 483-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19573895

RESUMEN

Recent data support that diabetes might be a conformational disease. Certainly, hyperglycaemia causes a broad range of deleterious effects that might facilitate protein aggregation. We have evaluated the effects of hyperglycaemia on antithrombin, a conformationally sensitive serpin with a potent anticoagulant role. Moreover, these studies might also help to understand the thrombotic risk associated to diabetes. We incubated in vitro plasma and purified antithrombin and human hepatoma cells (HepG2) with methyl-glyoxal and glucose. Moreover, a mouse model of acute diabetes was generated with streptozotocin. Antigen, anti-FXa activity, heparin affinity and conformational features of antithrombin were analysed. Histological and intracellular features and distribution of antithrombin in HepG2 and livers of mice were also evaluated. Hyperglycaemia in vitro induced a transition of antithrombin to a form with low heparin affinity that explained the loss of anticoagulant activity, without generation of abnormal conformers (polymers or latent antithrombin). However, these effects were not observed on circulating antithrombin from diabetic mice. In contrast, hyperglycaemia in vivo had significant effects on intracellular antithrombin, which was retained, forming microaggregates within the lumen of dilated cisterns of the endoplasmic reticulum. These effects explained the moderate type I deficiency observed in diabetic mice. Similar intracellular consequences were observed for another hepatic serpin, alpha1-antitrypsin. Our data further support that diabetes has conformational effects on structurally sensitive proteins. These effects on antithrombin, the main natural anticoagulant, might contribute to the hypercoagulable status of diabetic patients.


Asunto(s)
Antitrombinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Hiperglucemia/complicaciones , Hiperglucemia/fisiopatología , Trombosis/complicaciones , Animales , Antitrombinas/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Factores de Riesgo , Estreptozocina , Trombosis/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA