Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genes Dev ; 37(19-20): 865-882, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852796

RESUMEN

The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.


Asunto(s)
Histona Acetiltransferasas , Lisina , Animales , Humanos , Ratones , Acetilación , Adhesión Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo
2.
Front Cardiovasc Med ; 9: 756734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509276

RESUMEN

Racist and discriminatory federal, state, and local housing policies significantly contribute to disparities in cardiovascular disease incidence and mortality for individuals that self-identify as Black or African American. Here we highlight three key housing policies - "redlining," zoning, and the construction of highways - which have wrought a powerful, sustained, and destructive impact on cardiovascular health in Black/African American communities. Redlining and highway construction policies have restricted access to quality health care, increased exposure to carcinogens such as PM2.5, and increased exposure to extreme heat. At the root of these policy decisions are longstanding, toxic societal factors including racism, segregation, and discrimination, which also serve to perpetuate racial inequities in cardiovascular health. Here, we review these societal and structural factors and then link them with biological processes such as telomere shortening, allostatic load, oxidative stress, and tissue inflammation. Lastly, we focus on the impact of inflammation on the immune system and the molecular mechanisms by which the inflamed immune microenvironment promotes the formation of atherosclerotic plaques. We propose that racial residential segregation and discrimination increases tissue inflammation and cytokine production, resulting in dysregulated immune signaling, which promotes plaque formation and cardiovascular disease. This framework has the power to link structural racism not only to cardiovascular disease, but also to cancer.

5.
Cancer Lett ; 472: 50-58, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31862408

RESUMEN

HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) is a conserved long non-coding RNA (lncRNA) involved in myeloid and neural differentiation that is deregulated in acute myeloid leukemia and other cancers. Previous studies focused on the nuclear unspliced HOTAIRM1 transcript, however cytoplasmic splice variants exist whose roles have remained unknown. Here, we report novel functions of HOTAIRM1 in the kidney. HOTAIRM1 transcripts are induced during renal lineage differentiation of embryonic stem cells and required for expression of specific renal differentiation genes. We show that the major HOTAIRM1 transcript in differentiated cells is the spliced cytoplasmic HM1-3 isoform and that HM1-3 is downregulated in >90% of clear cell renal cell carcinomas (ccRCCs). Knockdown of HM1-3 in renal cells deregulates hypoxia-responsive and angiogenic genes, including ANGPTL4. Furthermore, HOTAIRM1 transcripts are downregulated by hypoxia-mimetic stress and knockdown of the cytoplasmic HM1-3 isoform in normoxic cells post-transcriptionally induces Hypoxia-Inducible Factor 1α (HIF1α) protein, a key activator of ANGPTL4. Our results demonstrate the pervasive downregulation of the specific HOTAIRM1 cytoplasmic isoform HM1-3 in ccRCC and suggest possible roles of HOTAIRM1 in kidney differentiation and suppression of HIF1-dependent angiogenic pathways.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/genética , Carcinoma de Células Renales/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , MicroARNs/genética , Apoptosis/genética , Carcinoma de Células Renales/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Riñón/crecimiento & desarrollo , Riñón/patología , Isoformas de Proteínas/genética , Transducción de Señal/genética , Hipoxia Tumoral/genética
6.
Nat Commun ; 10(1): 2014, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043611

RESUMEN

SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.


Asunto(s)
Genes Supresores de Tumor , Proteínas Proto-Oncogénicas c-myc/genética , Tumor Rabdoide/genética , Proteína SMARCB1/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/genética
7.
Oncotarget ; 9(34): 23670-23680, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29805765

RESUMEN

Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.

8.
Virology ; 518: 103-115, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29462755

RESUMEN

In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30II, associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors.


Asunto(s)
Carcinogénesis , Regulación Viral de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oncogenes/fisiología , Estrés Oxidativo/fisiología , Proteínas de los Retroviridae/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Monoéster Fosfórico Hidrolasas , Especies Reactivas de Oxígeno , Proteínas de los Retroviridae/genética
9.
PLoS One ; 12(7): e0180147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719624

RESUMEN

The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX) bind Enhancer box (E-box) DNA elements (CANNTG) and have the greatest affinity for the canonical MYC E-box (CME) CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87%) of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , ADN/genética , ADN/metabolismo , Motivos de Nucleótidos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Regulación de la Expresión Génica , Genómica , Humanos , Unión Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-myc/química , Especificidad por Sustrato
10.
PLoS Pathog ; 12(2): e1005414, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26845565

RESUMEN

Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection.


Asunto(s)
Proteínas Portadoras/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Linfocitos B/virología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , Proteínas Co-Represoras , Cristalografía , Proteínas de Unión al ADN , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia , Secuencias Repetidas en Tándem , Activación Transcripcional , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Virology ; 476: 271-288, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25569455

RESUMEN

The human T-cell leukemia retrovirus type-1 (HTLV-1) p30(II) protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30(II) interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30(II) and c-MYC remain to be completely understood. Herein we demonstrate that p30(II) induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30(II) in c-myc(-/-) HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30(II) is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30(II) inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30(II)/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica , Infecciones por HTLV-I/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de los Retroviridae/metabolismo , Acetilación , Secuencias de Aminoácidos , Proliferación Celular , Transformación Celular Viral , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/fisiopatología , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de los Retroviridae/genética
12.
AIMS Biophys ; 2(4): 794-809, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27077133

RESUMEN

Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.

13.
Biochim Biophys Acta ; 1839(5): 395-405, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705139

RESUMEN

MYC is an oncogenic DNA-binding transcription activator of many genes and is often upregulated in human cancers. MYC has an N-terminal transcription activation domain (TAD) that is also required for cell transformation. Various MYC TAD-interacting coactivators have been identified, including the transcription/transformation-associated protein (TRRAP), a subunit of different histone acetyltransferase (HAT) complexes such as the human "SPT3-TAF9-GCN5 Acetyltransferase" (STAGA) complex involved in MYC transactivation of the TERT gene. However, it remains unclear whether TRRAP and/or other subunits are directly contacted by MYC within these macromolecular complexes. Here, we characterize the interactions of MYC TAD with the STAGA complex. By protein crosslinking we identify both TRRAP and the GCN5 acetyltransferase as MYC TAD-interacting subunits within native STAGA. We show that purified GCN5 binds to an N-terminal sub-domain of MYC TAD (residues 21-108) and that the interaction of GCN5 and STAGA with this sub-domain is dependent on two related sequence motifs: M2 within the conserved MYC homology box I (MBI), and M3 located between residues 100-106. Interestingly, specific substitutions within the M2/3 motifs that only moderately reduce the intracellular MYC-STAGA interaction and do not influence dimerization of MYC with its DNA-binding partner MAX, strongly inhibit MYC acetylation by GCN5 and reduce MYC binding and transactivation of the GCN5-dependent TERT promoter in vivo. Hence, we propose that MYC associates with STAGA through extended interactions of the TAD with both TRRAP and GCN5 and that the TAD-GCN5 interaction is important for MYC acetylation and MYC binding to certain chromatin loci.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetiltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Factores de Transcripción p300-CBP/genética
14.
Mol Cell Biol ; 28(1): 108-21, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17967894

RESUMEN

Activation of eukaryotic gene transcription involves the recruitment by DNA-binding activators of multiprotein histone acetyltransferase (HAT) and Mediator complexes. How these coactivator complexes functionally cooperate and the roles of the different subunits/modules remain unclear. Here we report physical interactions between the human HAT complex STAGA (SPT3-TAF9-GCN5-acetylase) and a "core" form of the Mediator complex during transcription activation by the MYC oncoprotein. Knockdown of the STAF65gamma component of STAGA in human cells prevents the stable association of TRRAP and GCN5 with the SPT3 and TAF9 subunits; impairs transcription of MYC-dependent genes, including MYC transactivation of the telomerase reverse transcriptase (TERT) promoter; and inhibits proliferation of MYC-dependent cells. STAF65gamma is required for SPT3/STAGA interaction with core Mediator and for MYC recruitment of SPT3, TAF9, and core Mediator components to the TERT promoter but is dispensable for MYC recruitment of TRRAP, GCN5, and p300 and for acetylation of nucleosomes and loading of TFIID and RNA polymerase II on the promoter. These results suggest a novel STAF65gamma-dependent function of STAGA-type complexes in cell proliferation and transcription activation by MYC postloading of TFIID and RNA polymerase II that involves direct recruitment of core Mediator.


Asunto(s)
Acetilesterasa/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Oncogénica p55(v-myc)/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilesterasa/genética , Línea Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Complejos Multiproteicos/química , Proteína Oncogénica p55(v-myc)/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/genética , Telomerasa/genética , Telomerasa/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción TFIID/genética , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética
15.
Biochem J ; 403(3): 397-407, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17217336

RESUMEN

Max is a ubiquitous transcription factor with a bHLHZip [basic HLH (helix-loop-helix) leucine zipper] DNA-binding/dimerization domain and the central component of the Myc/Max/Mad transcription factor network that controls cell growth, proliferation, differentiation and apoptotic cell death in metazoans. Max is the obligatory DNA-binding and dimerization partner for all the bHLHZip regulators of the Myc/Max/Mad network, including the Myc family of oncoproteins and the Mad family of Myc antagonists, which recognize E-box DNA elements in the regulatory regions of target genes. Max lacks a transcription regulatory domain and is the only member of the network that efficiently homodimerizes. Binding of Max homodimers to E-box elements suppresses the transcription regulatory functions of its network partners and of other non-network E-box-binding regulators. In contrast with its highly regulated partners, Max is a constitutively expressed and phosphorylated protein. Phosphorylation is, however, the only Max post-translational modification identified so far. In the present study, we have analysed Max posttranslational modifications by MS. We have found that Max is acetylated at several lysine residues (Lys-57, Lys-144 and Lys-145) in mammalian cells. Max acetylation is stimulated by inhibitors of histone deacetylases and by overexpression of the p300 co-activator/HAT (histone acetyltransferase). The p300 HAT also directly acetylates Max in vitro at these three residues. Interestingly, the three Max residues acetylated in vivo and in vitro by p300 are important for Max nuclear localization and Max-mediated suppression of Myc transactivation. These results uncover novel post-translational modifications of Max and suggest the potential regulation of specific Max complexes by p300 and reversible acetylation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Secuencia de Aminoácidos , Células HeLa , Humanos , Lisina/fisiología , Señales de Localización Nuclear/fisiología , Espectrometría de Masas en Tándem , Transfección , alfa Carioferinas/fisiología , Factores de Transcripción p300-CBP
16.
Mol Cell Biol ; 25(23): 10220-34, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287840

RESUMEN

The c-Myc oncoprotein (Myc) controls cell fate by regulating gene transcription in association with a DNA-binding partner, Max. While Max lacks a transcription regulatory domain, the N terminus of Myc contains a transcription activation domain (TAD) that recruits cofactor complexes containing the histone acetyltransferases (HATs) GCN5 and Tip60. Here, we report a novel functional interaction between Myc TAD and the p300 coactivator-acetyltransferase. We show that p300 associates with Myc in mammalian cells and in vitro through direct interactions with Myc TAD residues 1 to 110 and acetylates Myc in a TAD-dependent manner in vivo at several lysine residues located between the TAD and DNA-binding domain. Moreover, the Myc:Max complex is differentially acetylated by p300 and GCN5 and is not acetylated by Tip60 in vitro, suggesting distinct functions for these acetyltransferases. Whereas p300 and CBP can stabilize Myc independently of acetylation, p300-mediated acetylation results in increased Myc turnover. In addition, p300 functions as a coactivator that is recruited by Myc to the promoter of the human telomerase reverse transcriptase gene, and p300/CBP stimulates Myc TAD-dependent transcription in a HAT domain-dependent manner. Our results suggest dual roles for p300/CBP in Myc regulation: as a Myc coactivator that stabilizes Myc and as an inducer of Myc instability via direct Myc acetylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Acetilación , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas/genética , Humanos , Lisina/metabolismo , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Activación Transcripcional/genética , Factores de Transcripción p300-CBP
17.
Biochem Biophys Res Commun ; 336(1): 274-80, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16126174

RESUMEN

The c-Myc oncoprotein (Myc) functions as a transcription regulator in association with an obligatory partner, Max, to control cell growth and differentiation. The Myc:Max complex regulates specific genes by recognizing "E-box" DNA sequences and promoter-bound factors such as Miz-1. Myc recruits histone acetyltransferases (HATs) to modify chromatin and is, itself, acetylated in mammalian cells by several of these HATs including p300/CBP, GCN5, and Tip60. The Myc residues that are directly modified by these different HATs remain unknown. Here, we have analyzed the acetylation of recombinant Myc:Max complexes by purified p300 HAT in vitro by using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. These analyses identify six lysine residues in human Myc (K143, K157, K275, K317, K323, and K371) as direct substrates for p300. Our results further indicate that p300 can acetylate DNA-bound Myc:Max complexes and that acetylated Myc:Max heterodimers efficiently interact with Miz-1.


Asunto(s)
Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transactivadores/metabolismo , Acetilación , Secuencia de Aminoácidos , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel , Datos de Secuencia Molecular , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Transcripción
18.
Protein Expr Purif ; 34(2): 215-22, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15003254

RESUMEN

The c-Myc oncoprotein (Myc) is a DNA sequence-specific transcription factor that regulates transcription of a wide variety of genes involved in the control of cell growth, proliferation, differentiation, and apoptosis and its deregulated expression is implicated in many types of human cancer. Myc has an N-terminal transcription activation domain (TAD) that interacts with various coactivators and a C-terminal basic-helix-loop-helix-leucine zipper (bHLHZip) domain required for E box-specific DNA-binding and heterodimerization with its obligatory bHLHZip protein partner Max. The analysis of the mechanisms by which the Myc:Max complex regulates transcription at the molecular level in vitro has been hampered by the difficulty in obtaining highly pure recombinant Myc:Max heterodimers that contain full-length Myc with its complete TAD domain and that have sequence-specific DNA-binding activity. Here, we describe a simple method to reconstitute recombinant Myc:Max complexes from highly purified full-length proteins expressed in Escherichia coli that are soluble and highly active in E box-specific DNA-binding in vitro. The reconstituted Myc:Max complexes are stable and lack Max:Max homodimers. This procedure should facilitate the characterization of the DNA-binding and transcription activation functions of full-length Myc:Max complexes in vitro and in particular the role of Myc TAD-interacting cofactors and Myc:Max post-translational modifications.


Asunto(s)
Elementos E-Box/genética , Secuencias Hélice-Asa-Hélice/genética , Leucina Zippers/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Clonación Molecular , Dimerización , Escherichia coli/genética , Humanos , Plásmidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Activación Transcripcional/genética
19.
J Biol Chem ; 278(22): 20405-12, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12660246

RESUMEN

Deregulation of the c-Myc oncoprotein (Myc) is implicated in many types of cancer. Myc is a sequence-specific transcription factor that regulates transcription of genes involved in the control of cell proliferation and apoptosis via mechanisms that are still poorly understood. Cell transformation by Myc involves its association with the transformation-transactivation domain-associated protein (TRRAP) and the human histone acetyltransferase (HAT) GCN5. TRRAP and GCN5 are components of a variety of shared and distinct multiprotein HAT complexes with diverse functions. Myc induces TRRAP recruitment and histone hyperacetylation at specific Myc-activated genes in vivo. However, the identity of the HAT complexes recruited by Myc and the roles of TRRAP and GCN5 in Myc function are still unclear. Here we show that Myc co-recruits TRRAP and GCN5 via direct physical interactions of its N-terminal activation/transformation domain with the human STAGA (SPT3-TAF-GCN5 acetylase) coactivator complex. We demonstrate that GCN5 and TRRAP cooperate to enhance transcription activation by the N-terminal activation domain of Myc in vivo and that this synergy requires both the SPT3/GCN5 interaction domain of TRRAP and the HAT activity of GCN5. Thus, TRRAP might function as an adaptor within the STAGA complex, which helps recruit GCN5 HAT activity to Myc during transcription activation.


Asunto(s)
Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Transactivadores/fisiología , Activación Transcripcional/fisiología , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Histona Acetiltransferasas , Histonas/metabolismo , Humanos , Pruebas de Precipitina , Proteínas Proto-Oncogénicas c-myc/química , Factores de Transcripción , Factores de Transcripción p300-CBP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA