Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
2.
Biomedicines ; 12(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397859

RESUMEN

Chaperone-mediated autophagy (CMA) is a selective proteolytic pathway in the lysosomes. Proteins are recognized one by one through the detection of a KFERQ motif or, at least, a KFERQ-like motif, by a heat shock cognate protein 70 (Hsc70), a molecular chaperone. CMA substrates are recognized and delivered to a lysosomal CMA receptor, lysosome-associated membrane protein 2A (LAMP-2A), the only limiting component of this pathway, and transported to the lysosomal lumen with the help of another resident chaperone HSp90. Since approximately 75% of proteins are reported to have canonical, phosphorylation-generated, or acetylation-generated KFERQ motifs, CMA maintains intracellular protein homeostasis and regulates specific functions in the cells in different tissues. CMA also regulates physiologic functions in different organs, and is then implicated in disease pathogenesis related to aging, cancer, and the central nervous and immune systems. In this minireview, we have summarized the most important findings on the role of CMA in tissue homeostasis and disease pathogenesis, updating the recent advances for this Special Issue.

3.
Autophagy ; 17(3): 672-689, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32093570

RESUMEN

The precise degradation of dysfunctional mitochondria by mitophagy is essential for maintaining neuronal homeostasis. HTT (huntingtin) can interact with numerous other proteins and thereby perform multiple biological functions within the cell. In this study, we investigated the role of HTT during mitophagy and analyzed the impact of the expansion of its polyglutamine (polyQ) tract. HTT is involved in different mitophagy steps, promoting the physical proximity of different protein complexes during the initiation of mitophagy and recruiting mitophagy receptors essential for promoting the interaction between damaged mitochondria and the nascent autophagosome. The presence of the polyQ tract in mutant HTT affects the formation of these protein complexes and determines the negative consequences of mutant HTT on mitophagy, leading to the accumulation of damaged mitochondria and an increase in oxidative stress. These outcomes contribute to general mitochondrial dysfunction and neurodegeneration in Huntington disease.Abbreviations: AMPK: AMP-activated protein kinase; ATG13: autophagy related 13; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; DMEM: Dulbecco's modified eagle medium; EDTA: ethylene-diamine-tetra-acetic acid; EGFP: enhanced green fluorescent protein; EGTA: ethylene glycol bis(2-aminoethyl ether)tetraacetic acid; FUNDC1: FUN14 domain containing 1; HD: Huntington disease; HRP: horseradish peroxidase; HTT: huntingtin; LC3-II: lipidated form of MAP1LC3/LC3; mtDNA: mitochondrial deoxyribonucleic acid; MTDR: MitoTracker Deep Red; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1, autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; OCR: oxygen consumption rate; OPTN: optineurin; OXPHOS: oxidative phosphorylation; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PINK1: PTEN induced putative kinase 1; PLA: proximity ligation assay; PMSF: phenylmethylsulfonyl fluoride; polyQ: polyglutamine; PtdIns3K: phosphatidylinositol 3-kinase; ROS: reactive oxygen species; Rot: rotenone; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TMRM: tetramethylrhodamine methyl ester; UB: ubiquitin; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mitofagia/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Humanos , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo
4.
Actual. psicol. (Impr.) ; 34(129)dic. 2020.
Artículo en Español | LILACS, SaludCR, PsiArg | ID: biblio-1383488

RESUMEN

Resumen. Objetivo. Estudiar las relaciones entre variables de ajuste personal y las conductas disruptivas en un grupo de 136 alumnos y alumnas de primaria de entre 9 y 12 años. Método. Estudio de campo observacional, de metodología no experimental y transversal. Se utilizaron varios cuestionarios para medir la autoestima, la personalidad, el estrés y las competencias emocionales de los y las estudiantes, así como un cuestionario ad hoc elaborado para el registro de las conductas disruptivas. Resultados. Los resultados indican relaciones significativas positivas entre conductas disruptivas y estrés escolar, así como negativas con autoestima, estabilidad, competencia y comprensión emocional. Las diferencias son significativas según el género, manifestándose las conductas inadecuadas en menor medida en el caso de las niñas.


Abstract. Objective. This study analyses the relationships between personal adjustment and disruptive behaviors in a group of 136 primary school students between the ages of 9 and 12. Method. This field observation study used a non-experimental, cross-sectional methodology. Several questionnaires were used to measure students' self-esteem, personality, stress, and emotional competencies. Moreover, an ad hoc questionnaire was created to record disruptive behaviors. Results. The results indicate significant positive relationships between disruptive behaviors and school stress, as well as negative ones with self-esteem, stability, competence, and emotional understanding. The differences are significant according to gender, with inappropriate behaviors manifesting to a lesser extent in the case of girls.


Asunto(s)
Humanos , Masculino , Femenino , Niño , Personalidad , Estrés Fisiológico , Problema de Conducta/psicología , España , Estudiantes
5.
Ann Clin Transl Neurol ; 7(8): 1436-1442, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32767480

RESUMEN

FBXO7 is implicated in the ubiquitin-proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). METHODS: We investigated the disease molecular bases in a child with PPS and brain iron accumulation. RESULTS: A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient's fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. CONCLUSION: This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders.


Asunto(s)
Proteínas F-Box/genética , Trastornos del Metabolismo del Hierro , Distrofias Neuroaxonales , Trastornos Parkinsonianos , Complejo de la Endopetidasa Proteasomal/metabolismo , Adulto , Consanguinidad , Epilepsia/enzimología , Epilepsia/genética , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Humanos , Trastornos del Metabolismo del Hierro/enzimología , Trastornos del Metabolismo del Hierro/genética , Trastornos del Metabolismo del Hierro/patología , Trastornos del Metabolismo del Hierro/fisiopatología , Distrofias Neuroaxonales/enzimología , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/patología , Distrofias Neuroaxonales/fisiopatología , Paraplejía/enzimología , Paraplejía/genética , Paraplejía/patología , Paraplejía/fisiopatología , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Degeneraciones Espinocerebelosas/enzimología , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología , Degeneraciones Espinocerebelosas/fisiopatología , Síndrome , Adulto Joven
6.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738589

RESUMEN

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Asunto(s)
Autofagia/fisiología , Senescencia Celular , Células Satélite del Músculo Esquelético/citología , Envejecimiento/patología , Animales , Recuento de Células , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Epigénesis Genética , Homeostasis , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia , Músculo Esquelético/citología , Músculo Esquelético/patología , Orgánulos/metabolismo , Estrés Oxidativo , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Sarcopenia/patología , Sarcopenia/prevención & control , Células Satélite del Músculo Esquelético/patología
7.
Mov Disord ; 28(6): 725-32, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23580333

RESUMEN

Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function.


Asunto(s)
Enfermedad de Gaucher/patología , Lisosomas/patología , Enfermedad de Parkinson/patología , Animales , Autofagia , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Lisosomas/metabolismo , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/genética , Transducción de Señal/fisiología
8.
Autophagy ; 8(9): 1389-91, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22885599

RESUMEN

Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.


Asunto(s)
Lisosomas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , ATPasas de Translocación de Protón/genética , Autofagia , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Cuerpos de Lewy/metabolismo , Lisosomas/metabolismo , ATPasas de Translocación de Protón/deficiencia
9.
Proc Natl Acad Sci U S A ; 109(24): 9611-6, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22647602

RESUMEN

Parkinson disease (PD) is a progressive neurodegenerative disorder pathologically characterized by the loss of dopaminergic neurons from the substantia nigra pars compacta and the presence, in affected brain regions, of protein inclusions named Lewy bodies (LBs). The ATP13A2 gene (locus PARK9) encodes the protein ATP13A2, a lysosomal type 5 P-type ATPase that is linked to autosomal recessive familial parkinsonism. The physiological function of ATP13A2, and hence its role in PD, remains to be elucidated. Here, we show that PD-linked mutations in ATP13A2 lead to several lysosomal alterations in ATP13A2 PD patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished lysosomal-mediated clearance of autophagosomes. Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells restores lysosomal function and attenuates cell death. Relevant to PD, ATP13A2 levels are decreased in dopaminergic nigral neurons from patients with PD, in which ATP13A2 mostly accumulates within Lewy bodies. Our results unravel an instrumental role of ATP13A2 deficiency on lysosomal function and cell viability and demonstrate the feasibility and therapeutic potential of modulating ATP13A2 levels in the context of PD.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/patología , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/metabolismo
10.
Nat Commun ; 2: 386, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21750540

RESUMEN

Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble proteins in lysosomes. CMA contributes to cellular quality control and is activated as part of the cellular response to different stressors. Defective CMA has been identified in ageing and different age-related diseases. Until now, CMA activity could only be measured in vitro using isolated lysosomes. Here we report the development of a photoconvertible fluorescent reporter that allows monitoring of CMA activity in living cells. Activation of CMA increases the association of the reporter with lysosomes which can be visualized as a change in the intracellular fluorescence. The CMA reporter can be utilized in a broad variety of cells and is suitable for high-content microscopy. Using this reporter, we find that levels of basal and inducible CMA activity are cell-type dependent, and we have identified an upregulation of this pathway in response to the catalytic inhibition of the proteasome.


Asunto(s)
Autofagia/fisiología , Lisosomas/fisiología , Chaperonas Moleculares/fisiología , Técnicas de Sonda Molecular , Análisis de Varianza , Animales , Línea Celular Tumoral , Citometría de Flujo , Fluorescencia , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Células 3T3 NIH , Plásmidos/genética
11.
Nat Neurosci ; 13(5): 567-76, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20383138

RESUMEN

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Alterations in macroautophagy, the main process responsible for bulk autophagic degradation, have been proposed to contribute to pathogenesis in Huntington's disease (HD), a genetic neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin protein. However, the precise mechanism behind macroautophagy malfunction in HD is poorly understood. In this work, using cellular and mouse models of HD and cells from humans with HD, we have identified a primary defect in the ability of autophagic vacuoles to recognize cytosolic cargo in HD cells. Autophagic vacuoles form at normal or even enhanced rates in HD cells and are adequately eliminated by lysosomes, but they fail to efficiently trap cytosolic cargo in their lumen. We propose that inefficient engulfment of cytosolic components by autophagosomes is responsible for their slower turnover, functional decay and accumulation inside HD cells.


Asunto(s)
Autofagia/fisiología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Animales , Apoptosis/genética , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Enfermedad de Huntington/genética , Inmunosupresores/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Péptidos/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Suero/metabolismo , Sirolimus/farmacología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Fracciones Subcelulares/ultraestructura , Tapsigargina/farmacología , Factores de Tiempo , Alcaloides de la Vinca/metabolismo
12.
Hum Mol Genet ; 18(21): 4153-70, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19654187

RESUMEN

Aggregation and cleavage are two hallmarks of Tau pathology in Alzheimer disease (AD), and abnormal fragmentation of Tau is thought to contribute to the nucleation of Tau paired helical filaments. Clearance of the abnormally modified protein could occur by the ubiquitin-proteasome and autophagy-lysosomal pathways, the two major routes for protein degradation in cells. There is a debate on which of these pathways contributes to clearance of Tau protein and of the abnormal Tau aggregates formed in AD. Here, we demonstrate in an inducible neuronal cell model of tauopathy that the autophagy-lysosomal system contributes to both Tau fragmentation into pro-aggregating forms and to clearance of Tau aggregates. Inhibition of macroautophagy enhances Tau aggregation and cytotoxicity. The Tau repeat domain can be cleaved near the N terminus by a cytosolic protease to generate the fragment F1. Additional cleavage near the C terminus by the lysosomal protease cathepsin L is required to generate Tau fragments F2 and F3 that are highly amyloidogenic and capable of seeding the aggregation of Tau. We identify in this work that components of a selective form of autophagy, chaperone-mediated autophagy, are involved in the delivery of cytosolic Tau to lysosomes for this limited cleavage. However, F1 does not fully enter the lysosome but remains associated with the lysosomal membrane. Inefficient translocation of the Tau fragments across the lysosomal membrane seems to promote formation of Tau oligomers at the surface of these organelles which may act as precursors of aggregation and interfere with lysosomal functioning.


Asunto(s)
Lisosomas/metabolismo , Fagosomas/metabolismo , Proteínas tau/metabolismo , Animales , Autofagia , Western Blotting , Catepsina L/metabolismo , Línea Celular Tumoral , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Tauopatías/metabolismo , Proteínas tau/química , Proteínas tau/genética
13.
Exp Gerontol ; 40(8-9): 622-33, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16125351

RESUMEN

Continuous turnover of intracellular proteins is essential for the maintenance of cellular homeostasis and for the regulation of multiple cellular functions. The first reports showing a decrease in total rates of protein degradation with age are dated more than 50 years ago, when the major players in protein degradation where still to be discovered. The current advances in the molecular characterization of the two main intracellular proteolytic systems, the lysosomal and the ubiquitin proteasome system, offer now the possibility of a systematic search for the defect(s) that lead to the declined activity of these systems in old organisms. We discuss here, in light of the current findings, how malfunctioning of these two proteolytic systems can contribute to different aspects of the phenotype of aging and to the pathogenesis of some age-related diseases.


Asunto(s)
Envejecimiento/fisiología , Proteínas/metabolismo , Anciano , Autofagia , Senescencia Celular/fisiología , Homeostasis , Humanos , Lisosomas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ubiquitina/metabolismo
14.
J Biol Chem ; 278(31): 28378-87, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12730230

RESUMEN

The Escherichia coli MnmE protein is a three-domain protein that exhibits a very high intrinsic GTPase activity and low affinity for GTP and GDP. The middle GTPase domain, when isolated, conserves the high intrinsic GTPase activity of the entire protein, and the C-terminal domain contains the only cysteine residue present in the molecule. MnmE is an evolutionarily conserved protein that, in E. coli, has been shown to control the modification of the uridine at the wobble position of certain tRNAs. Here we examine the biochemical and functional consequences of altering amino acid residues within conserved motifs of the GTPase and C-terminal domains of MnmE. Our results indicate that both domains are essential for the MnmE tRNA modifying function, which requires effective hydrolysis of GTP. Thus, it is shown for the first time that a confirmed defect in the GTP hydrolase activity of MnmE results in the lack of its tRNA modifying function. Moreover, the mutational analysis of the GTPase domain indicates that MnmE is closer to classical GTPases than to GTP-specific metabolic enzymes. Therefore, we propose that MnmE uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the C-terminal Cys may function as a catalytic residue. We demonstrate that point mutations abolishing the tRNA modifying function of MnmE confer synthetic lethality, which stresses the importance of this function in the mRNA decoding process.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Cisteína , Escherichia coli/química , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/fisiología , ARN de Transferencia/metabolismo , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/química , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/metabolismo , Hidrólisis , Mutagénesis Sitio-Dirigida , Nucleótidos/farmacología , Fragmentos de Péptidos/química , Mutación Puntual , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA