Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS One ; 19(6): e0304141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843250

RESUMEN

Lynch syndrome is caused by inactivating variants in DNA mismatch repair genes, namely MLH1, MSH2, MSH6 and PMS2. We have investigated five MLH1 and one MSH2 variants that we have identified in Turkish and Tunisian colorectal cancer patients. These variants comprised two small deletions causing frameshifts resulting in premature stops which could be classified pathogenic (MLH1 p.(His727Profs*57) and MSH2 p.(Thr788Asnfs*11)), but also two missense variants (MLH1 p.(Asn338Ser) and p.(Gly181Ser)) and two small, in-frame deletion variants (p.(Val647-Leu650del) and p.(Lys678_Cys680del)). For such small coding genetic variants, it is unclear if they are inactivating or not. We here provide clinical description of the variant carriers and their families, and we performed biochemical laboratory testing on the variant proteins to test if their stability or their MMR activity are compromised. Subsequently, we compared the results to in-silico predictions on structure and conservation. We demonstrate that neither missense alteration affected function, while both deletion variants caused a dramatic instability of the MLH1 protein, resulting in MMR deficiency. These results were consistent with the structural analyses that were performed. The study shows that knowledge of protein function may provide molecular explanations of results obtained with functional biochemical testing and can thereby, in conjunction with clinical information, elevate the evidential value and facilitate clinical management in affected families.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Humanos , Masculino , Homólogo 1 de la Proteína MutL/genética , Femenino , Reparación de la Incompatibilidad de ADN/genética , Persona de Mediana Edad , Proteína 2 Homóloga a MutS/genética , Adulto , Túnez , Linaje , Turquía , Anciano , Mutación Missense
2.
Clin Case Rep ; 10(12): e6737, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36583195

RESUMEN

CLCN2-related leukoencephalopathy (CC2L OMIM#: 615651) is a recently identified rare disorder. It is caused by autosomal recessive mutations in the CLCN2 gene and leads to the dysfunction of its encoded CLC-2 chloride channel protein with characteristic brain MRI features of leukoencephalopathy. We report the first Tunisian patient with clinical features of ClCN-2-related leukoencephalopathy. A 54-year-old female with a family history of leukemia, male infertility, motor disability, and headaches who initially presented with a tension-type headache and normal physical examination. At the follow-up, she developed mild gait ataxia and psycho-cognitive disturbances. A previously reported homozygous NM_004366.6(CLCN2):c.1709G > A (p.Trp570Ter) stop gained mutation was identified. This report expands the knowledge related to CC2L and highlights the clinical features in affected individuals of African descent.

3.
PLoS One ; 17(12): e0278283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454741

RESUMEN

Lynch syndrome is a heritable condition caused by a heterozygous germline inactivating mutation of the DNA mismatch repair (MMR) genes, most commonly the MLH1 gene. However, one third of the identified alterations are missense variants, for which the clinical significance is unclear in many cases. We have identified three MLH1 missense alterations (p.(Glu736Lys), p.(Pro640Thr) and p.(Leu73Pro)) in six individuals from large Tunisian families. For none of these alterations, a classification of pathogenicity was available, consequently diagnosis, predictive testing and targeted surveillance in affected families was impossible. We therefore performed functional laboratory testing using a system testing stability as well as catalytic activity that includes clinically validated reference variants. Both p.(Leu73Pro) and p.(Pro640Thr) were found to be non-functional due to severe defects in protein stability and catalytic activity. In contrast, p.(Glu736Lys) was comparable to the wildtype protein and therefore considered a neutral substitution. Analysis of residue conservation and of the structural roles of the substituted residues corroborated these findings. In conjunction with the available clinical data, two variants fulfil classification criteria for class 4 "likely pathogenic". The findings of this work clarify the mechanism of pathogenicity of two unclear MLH1 variants and enables predictive testing and targeted surveillance in members of carrier families worldwide.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Mutación Missense , Humanos , Virulencia , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Mutación de Línea Germinal , Homólogo 1 de la Proteína MutL/genética
4.
Molecules ; 27(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565980

RESUMEN

Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.


Asunto(s)
Cupressus , Aceites Volátiles , Animales , Antibacterianos/farmacología , Cupressus/química , Conservantes de Alimentos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Aceites Volátiles/química , Aceites Volátiles/farmacología , Staphylococcus aureus , Pez Cebra
5.
Ann Hum Genet ; 86(4): 181-194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118659

RESUMEN

BACKGROUND: Intellectual disability is a form of neurodevelopmental disorders that begin in childhood and is characterized by substantial intellectual difficulties as well as difficulties in conceptual, social, and practical areas of living. Several genetic and nongenetic factors contribute to its development; however, its most severe forms are generally attributed to single-gene defects. High-throughput technologies and data sharing contributed to the diagnosis of hundreds of single-gene intellectual disability subtypes. METHOD: We applied exome sequencing to identify potential variants causing syndromic intellectual disability in six Sudanese patients from four unrelated families. Data sharing through the Varsome portal corroborated the diagnosis of one of these patients and a Tunisian patient investigated through exome sequencing. Sanger sequencing validated the identified variants and their segregation with the phenotypes in the five studied families. RESULT: We identified three pathogenic/likely pathogenic variants in CCDC82, ADAT3, and HUWE1 and variants of uncertain significance in HERC2 and ATP2B3. The patients with the CCDC82 variants had microcephaly and spasticity, two signs absent in the two previously reported families with CCDC82-related intellectual disability. CONCLUSION: In conclusion, we report new patients with pathogenic mutations in the genes CCDC82, ADAT3, and HUWE1. We also highlight the possibility of extending the CCDC82-linked phenotype to include spastic paraplegia and microcephaly.


Asunto(s)
Adenosina Desaminasa , Discapacidad Intelectual , Proteínas de Unión al ARN , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Adenosina Desaminasa/genética , Exoma , Humanos , Discapacidad Intelectual/diagnóstico , Microcefalia/genética , Mutación , Paraplejía/genética , Linaje , Fenotipo , Proteínas de Unión al ARN/genética , Sudán , Proteínas Supresoras de Tumor/genética , Túnez , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
6.
J Biomol Struct Dyn ; 40(21): 10940-10951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34423747

RESUMEN

Hereditary hearing impairment (HI) is a common disease with the highest incidence among sensory defects. Several genes have been identified to affect stereocilia structure causing HI, including the unconventional myosin3A. Interestingly, we noticed that variants in MYO3A gene have been previously found to cause variable HI onset and severity. Using clinical exome sequencing, we identified a novel pathogenic variant p.(Lys50Arg) in the MYO3A kinase domain (MYO3A-KD). Previous in vitro studies supported its damaging effect as a 'kinase-dead' mutant. We further analyzed this variation through molecular dynamics which predicts that changes in flexibility of MYO3A structure would influence the protein-ATP binding properties. This Lys50Arg mutation segregated with congenital profound non-syndromic HI. To better investigate this variability, we collected previously identified MYO3A-KDs variants, p.(Tyr129Cys), p.(His142Gln) and p.(Pro189Thr), and built both wild type and mutant 3 D MYO3A-KD models to assess their impact on the protein structure and function. Our results suggest that KD mutations could either cause a congenital profound form of HI, when particularly affecting the kinase activity and preventing the auto-phosphorylation of the motor, or a late onset and progressive form, when partially or completely inactivating the MYO3A protein. In conclusion, we report a novel pathogenic variant affecting the ATP-binding site within the MYO3A-KD causing congenital profound HI. Through computational approaches we provide a deeper understanding on the correlation between the effects of MYO3A-KD mutations and the variable hearing phenotypes. To the best of our knowledge this is the first study to correlate mutations' genotypes with the variable phenotypes of DFNB30.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Miosina Tipo III , Humanos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Mutación , Adenosina Trifosfato , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética
7.
Am J Med Genet A ; 185(4): 1081-1090, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33403770

RESUMEN

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Anomalías Múltiples/genética , Catarata/genética , Trastornos Congénitos de Glicosilación/genética , Proteínas de la Membrana/genética , Atrofia Muscular/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/ultraestructura , Anomalías Múltiples/patología , Adolescente , Catarata/complicaciones , Catarata/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/patología , Ojo/patología , Reconocimiento Facial , Facies , Femenino , Humanos , Proteínas de la Membrana/ultraestructura , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Mutación Missense/genética
8.
BMC Med Genet ; 21(1): 122, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493243

RESUMEN

BACKGROUND: Otosclerosis (OTSC) is among the most common causes of a late-onset hearing loss in adults and is characterized by an abnormal bone growth in the otic capsule. Alteration in the osteoprotegerin (OPG) expression has been suggested in the implication of OTSC pathogenesis. METHODS: A case-control association study of rs2228568, rs7844539, rs3102734 and rs2073618 single nucleotide polymorphisms (SNPs) in the OPG gene was performed in a Tunisian-North African population composed of 183 unrelated OTSC patients and 177 healthy subjects. In addition, a multilocus association and a meta-analysis of existing studies were conducted. RESULTS: Rs3102734 (p = 0.013) and rs2073618 (p = 0.007) were significantly associated with OTSC, which were predominantly detected in females after multiple corrections. Among the OPG studied SNPs, the haplotypes A-A-C-G (p = 0.0001) and A-A-C-C (p = 0.0004) were significantly associated with OTSC in females. Multilocus association revealed that the SNPs: rs2073618 in OPG, rs1800472 in TGFß1, rs39335, rs39350 and rs39374 in RELN, and rs494252 in chromosome 11 showed significant OTSC-associated alleles in Tunisian individuals. In addition, meta-analysis of the rs2073618 SNP in Tunisian, Indian and Italian populations revealed evidence of an association with OTSC (OR of 0.826, 95% CI [0.691-0.987], p = 0.035). CONCLUSIONS: Our findings suggest that rs3102734 and rs2073618 variants are associated with OTSC in North African ethnic Tunisian population. Meta-analysis of the rs2073618 in three different ethnic population groups indicated an association with OTSC.


Asunto(s)
Epistasis Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Osteoprotegerina/genética , Otosclerosis/genética , Polimorfismo de Nucleótido Simple , Alelos , Estudios de Casos y Controles , Mapeo Cromosómico , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Modelos Biológicos , Oportunidad Relativa , Otosclerosis/diagnóstico , Proteína Reelina
9.
Biomarkers ; 23(4): 347-356, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29325454

RESUMEN

CONTEXT: Presbycusis, an age-related hearing impairment (ARHI), represents the most common sensory disability in adults. Today, the molecular mechanisms underlying presbycusis remain unclear. This is in particular due to the fact that ARHI is a multifactorial complex disorder resulting from several genomic factors interacting with lifelong cumulative effects of: disease, diet, and environment. OBJECTIVE: Identification of novel biomarkers for presbycusis. MATERIALS AND METHODS: We selectively ascertained 18 elderly unrelated women lacking environmental and metabolic risk factors. Subsequently, we screened for methylation map changes in blood samples of women with presbycusis as compared to controls, using reduced representation bisulfite sequencing. We focused on hypermethylated cytosine bases located in gene promoters and the first two exons. To elucidate the related gene expression changes, we performed transcriptomic study using gene expression microarray. RESULTS: Twenty-seven genes, known to be expressed in adult human cochlea, were found in the blood cells to be differentially hypermethylated with significant (p < 0.01) methylation differences (>30%) and down-expressed with fold change >1.2 (FDR <0.05). Functional annotation and qRT-PCR further identified P2RX2, KCNQ5, ERBB3 and SOCS3 to be associated with the progression of ARHI. DISCUSSION AND CONCLUSION: Down-expressed genes associated with DNA hypermethylation could be used as biomarkers for understanding complex pathogenic mechanisms underlying presbycusis.


Asunto(s)
Metilación de ADN/fisiología , Presbiacusia/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Humanos , Canales de Potasio KCNQ/genética , Análisis por Micromatrices , Receptor ErbB-3/genética , Receptores Purinérgicos P2X2/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética
10.
Hum Mol Genet ; 27(5): 780-798, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293958

RESUMEN

The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.


Asunto(s)
Pérdida Auditiva/genética , Infertilidad Masculina/genética , Monoéster Fosfórico Hidrolasas/genética , Proteínas Tirosina Fosfatasas/genética , Animales , Sistemas CRISPR-Cas , Femenino , Estudios de Asociación Genética , Pérdida Auditiva/fisiopatología , Humanos , Masculino , Ratones Mutantes , Linaje , Monoéster Fosfórico Hidrolasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Testículo/fisiopatología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Mol Vis ; 22: 827-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27440999

RESUMEN

PURPOSE: Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively. METHODS: In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing of three known USH1 genes: MYO7A, PCDH15, and USH1C. RESULTS: Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in MYO7A. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of mutations, among which three were novel. These novel mutations will be included in the NADf mutation screening chip that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient molecular diagnosis of USH in a patient's early childhood is of utmost importance, allowing better educational and therapeutic management.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cadherinas/genética , Codón sin Sentido , Mutación del Sistema de Lectura , Miosinas/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Adolescente , Adulto , Proteínas Relacionadas con las Cadherinas , Proteínas de Ciclo Celular , Consanguinidad , Proteínas del Citoesqueleto , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Miosina VIIa , Linaje , Análisis de Secuencia de ADN , Túnez , Adulto Joven
12.
Mol Genet Genomics ; 290(4): 1327-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25633957

RESUMEN

Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous.The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher-Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X-Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype-phenotype correlation for the associated phenotypes and clinical follow-up.


Asunto(s)
Colágeno Tipo XI/genética , Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva Sensorineural/genética , Mutación Missense , Secuencia de Aminoácidos , Secuencia de Bases , Colágeno Tipo XI/química , Consanguinidad , Exoma/genética , Salud de la Familia , Femenino , Frecuencia de los Genes , Genotipo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido
13.
Eur J Med Genet ; 54(6): e535-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21802533

RESUMEN

Autosomal recessive non-syndromic hearing loss (ARNSHL) is a genetically heterogenous disorder with 41 genes so far identified. Among these genes, ESRRB whose mutations are responsible for DFNB35 hearing loss in Pakistani and Turkish families. This gene encodes the estrogen-related receptor beta. In this study, we report a novel mutation (p.Y305H) in the ESRRB gene in a Tunisian family with ARNSHL. This mutation was not detected in 100 healthy individuals. Molecular modeling showed that the p.Y305H mutation is likely to alter the conformation of the ligand binding-site by destabilizing the coactivator binding pocket. Interestingly, this ligand-binding domain of the ESRRB protein has been affected in 5 out of 6 mutations causing DFNB35 hearing loss. Using linkage and DHPLC analysis, no more mutations were detected in the ESRRB gene in other 127 Tunisian families with ARNSHL indicating that DFNB35 is most likely to be a rare type of ARNSHL in the Tunisian population.


Asunto(s)
Sitios Genéticos/genética , Pérdida Auditiva/genética , Mutación Missense , Receptores de Estrógenos/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Estudios de Casos y Controles , Mapeo Cromosómico , Consanguinidad , Dermatoglifia del ADN , Análisis Mutacional de ADN , Femenino , Genes Recesivos , Ligamiento Genético , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Túnez
14.
Eur J Med Genet ; 54(5): e484-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21700001

RESUMEN

Branchio-oto-renal (BOR) and Branchio-otic (BO) syndromes are dominant disorders characterized by variable hearing impairment (HI) and branchial defects. BOR includes additional kidney malformations. BO/BOR syndromes are genetically heterogeneous and caused by mutations in EYA1 and SIX1 genes. Mutation in SIX1 is responsible also for DFNA23, a locus for non-syndromic HI. Strikingly, the severity of the phenotype did not seem to correlate with the type of SIX1 mutation. Herein, we identified a novel mutation in SIX1 (p.E125K) in a Tunisian family with variable HI and preauricular pits. This mutation is located at the same position as the mutation identified in the Catwhesel (Cwe) mouse. No renal and branchial defects were observed in our family nor in Cwe/+ mice. A homology model revealed that the replacement of the Glutamate by a Lysine alters the electrostatic potential surface propriety which may affect the DNA-binding activity.


Asunto(s)
Oído/anomalías , Pérdida Auditiva/genética , Proteínas de Homeodominio/genética , Mutación/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Síndrome Branquio Oto Renal/genética , Secuencia Conservada , Femenino , Humanos , Riñón/anomalías , Masculino , Repeticiones de Microsatélite/genética , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Fenotipo , Conformación Proteica , Alineación de Secuencia
15.
Mol Vis ; 16: 1898-906, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21031134

RESUMEN

PURPOSE: Recessive mutations of the myosin VIIA (MYO7A) gene are reported to be responsible for both a deaf-blindness syndrome (Usher type 1B [USH1B] and atypical Usher syndrome) and nonsyndromic hearing loss (HL; Deafness, Neurosensory, Autosomal Recessive 2 [DFNB2]). The existence of DFNB2 is controversial, and often there is no relationship between the type and location of the MYO7A mutations corresponding to the USH1B and DFNB2 phenotype. We investigated the molecular determinant of a mild form of retinopathy in association with a subtle splicing modulation of MYO7A mRNA. METHODS: Affected members underwent detailed audiologic and ocular characterization. DNA samples from family members were genotyped with polymorphic microsatellite markers. Sequencing of MYO7A was performed. Endogenous lymphoid RNA analysis and a splicing minigene assay were used to study the effect of the c.1935G>A mutation. RESULTS: Funduscopy showed mild retinitis pigmentosa in adults with HL. Microsatellite analysis showed linkage to markers in the region on chromosome 11q13.5. Sequencing of MYO7A revealed a mutation in the last nucleotide of exon 16 (c.1935G>A), which corresponds to a substitution of a methionine to an isoleucine residue at amino acid 645 of the myosin VIIA. However, structural prediction of the molecular model of myosin VIIA shows that this amino acid replacement induces only minor structural changes in the immediate environment of the mutation and thus does not alter the overall native structure. We found that, although predominantly included in mature mRNA, exon 16 is in fact alternatively spliced in control cells and that the mutation at the very last position is associated with a switch toward a predominant exclusion of that exon. This observation was further supported using a splicing minigene transfection assay; the c.1935G>A mutation was found to trigger a partial impairment of the adjacent donor splice site, suggesting that the unique change at the last position of the exon is responsible for the enhanced exon exclusion in this family. CONCLUSIONS: This study shows how an exonic mutation that weakens the 5' splice site enhances a minor alternative splicing without abolishing a complete exclusion of the exon and therefore causes a less severe retinitis pigmentosa than the USH1B-associated alleles. It would be interesting to examine a possible correlation between intrafamilial phenotypic variability and the subtle variation in exon 16 inclusion, probably related to genetic background specificities.


Asunto(s)
Empalme Alternativo/genética , Sordera/complicaciones , Sordera/genética , Mutación Missense/genética , Miosinas/genética , Enfermedades de la Retina/complicaciones , Enfermedades de la Retina/genética , Adolescente , Adulto , Anciano , Sustitución de Aminoácidos/genética , Niño , Segregación Cromosómica/genética , Análisis Mutacional de ADN , Exones/genética , Familia , Femenino , Genes Recesivos/genética , Heterogeneidad Genética , Genotipo , Células HeLa , Humanos , Masculino , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Miosina VIIa , Linaje , Sitios de Empalme de ARN/genética , Homología Estructural de Proteína
16.
Genet Test Mol Biomarkers ; 13(1): 147-51, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19309289

RESUMEN

Recessive mutations of MYO15A are associated with nonsyndromic hearing loss (HL) in humans (DFNB3) and in the shaker-2 mouse. Human MYO15A has 66 exons and encodes unconventional myosin XVA. Analysis of 77 Tunisian consanguineous families segregating recessive deafness revealed evidence of linkage to microsatellite markers for DFNB3 in four families. In two families, sequencing of MYO15A led to the identification of two novel homozygous mutations: a nonsense (c.4998C>A (p.C1666X) in exon 17 and a splice site mutation in intron 54 (c.9229 + 1G>A). A novel mutation of unknown significance, c.7395 + 3G>C, was identified in the third family, and no mutation was found in the fourth family. In conclusion, we discovered three novel mutations of MYO15A, and our data suggest the possibility that there are two distinct genes at the DFNB3 locus.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Mutación , Miosinas/genética , Codón sin Sentido , Consanguinidad , Análisis Mutacional de ADN , Exones , Femenino , Genes Recesivos , Pruebas Genéticas , Homocigoto , Humanos , Intrones , Masculino , Miosinas/química , Linaje , Sitios de Empalme de ARN , Túnez
17.
Biochem Biophys Res Commun ; 355(4): 1031-7, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17336924

RESUMEN

The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.


Asunto(s)
Enfermedades Mitocondriales/genética , ARN de Transferencia de Leucina/genética , Adenosina/genética , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Guanosina/genética , Humanos , Masculino , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Linaje , ARN de Transferencia de Leucina/química , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA