Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Mol Cell Cardiol ; 196: 12-25, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214497

RESUMEN

A better understanding of the pathophysiology of cardiac fat depots is crucial to describe their role in the development of cardiovascular diseases. To this end, we have developed a method to isolate mature fat cells from the pericardial adipose tissue (PAT), the most accessible cardiac fat depot during cardiac surgery. Using enzymatic isolation, we were able to successfully obtain mature fat cells together with the corresponding cells of the stromal vascular fraction (SVF). We subjected the PAT adipocytes to thorough morphological and molecular characterization, including detailed fatty acid profiling, and simultaneously investigated their reactivity to external stimuli. Our approach resulted in highly purified fat cells with sustained viability for up to 72 h after explantation. Remarkably, these adipocytes responded to multiple challenges, including pro-inflammatory and metabolic stimuli, indicating their potential to trigger a pro-inflammatory response and modulate endothelial cell behavior. Furthermore, we have created conditions to maintain whole PAT in culture and preserve their viability and reactivity to external stimuli. The efficiency of cell recovery combined with minimal dedifferentiation underscores the promise for future applications as a personalized tool for screening and assessing individual patient responses to drugs and supplements or nutraceuticals.

2.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892185

RESUMEN

N-methylpyridinium (NMP) is produced through the pyrolysis of trigonelline during the coffee bean roasting process. Preliminary studies suggest that NMP may have health benefits, thanks to its antioxidant properties. Based on this background, the aim of this study was to evaluate whether NMP could have a protective effect against LPS-induced neuroinflammation in human glioblastoma cells (U87MG). With this aim, U87MG cells were pre-treated with NMP (0.5 µM) for 1 h and then exposed to LPS (1 µg/mL) for 24 h. Our findings show that NMP attenuates LPS-induced neuroinflammation by reducing the expression of pro-inflammatory cytokines, such as IL-1ß, TNF-α and IL-6, through the inhibition of the NF-κB signaling pathway, which is critical in regulating inflammatory responses. NMP is able to suppress the activation of the NF-κB signaling pathway, suggesting its potential in preventing neuroinflammatory conditions. These outcomes support the notion that regular consumption of NMP, possibly through coffee consumption, may offer protection against neuroinflammatory states implicated in neurological disorders.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Compuestos de Piridinio , Transducción de Señal , Humanos , Fármacos Neuroprotectores/farmacología , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Transducción de Señal/efectos de los fármacos , Compuestos de Piridinio/farmacología , Línea Celular Tumoral , Citocinas/metabolismo
3.
Curr Issues Mol Biol ; 46(5): 4063-4105, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38785519

RESUMEN

Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.

4.
Curr Aging Sci ; 17(3): 210-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317475

RESUMEN

BACKGROUND: Loss of functional capacity negatively impacts the quality of life in older adults. OBJECTIVE: This single-site randomized controlled study examined whether short- (one week) and long-term (three months) blackcurrant supplementations combined with habitual physical activity would improve functional capacity and quality of life in previously sedentary older women. METHODS: Thirty sedentary, healthy older women were randomly assigned to receive blackcurrant supplementation (400 mg of blackcurrant extract) (Polyphenol group, n=15; 74.2±10.0 years) or no supplementation (capsules of 400 mg of corn flour) (Placebo group, n=15; 72.8±8.7 years). Each group consumed two capsules daily for one week and three months, with a washout period of one week between the two phases. The polyphenol group was required to increase habitual activity levels. Participants underwent a functional capacity assessment consisting of a sixminute walk, sit-to-stand test, Berg balance scale measurement and quality of life evaluation with the Scale of Life Satisfaction Index (LSI) at the start, after one week, and after three months of supplementation. RESULTS: Walking distance and time to sit-to-stand improved by 2.5% (p=0.005) and 7.5% (p=0.005), respectively, after one week in the polyphenol group. After 3 months, walking distance in the six-minute walk test increased by 12.3% (p=0.001) while the time to sit-to-stand decreased by 16% (p=0.002) in the polyphenol compared to placebo group, respectively. No differences in Berg balance scale were observed. Quality of life, indexed by LSI, improved by 39% (p=0.001) in the polyphenol compared to the placebo group. CONCLUSION: Blackcurrant supplementation, combined with habitual activity, may enhance functional capacity and quality of life in older women, offering a potential strategy to maintain independence. However, future studies should address longer durations to validate these findings.


Asunto(s)
Suplementos Dietéticos , Ejercicio Físico , Calidad de Vida , Ribes , Conducta Sedentaria , Humanos , Femenino , Anciano , Extractos Vegetales/farmacología , Anciano de 80 o más Años , Factores de Tiempo , Factores de Edad , Polifenoles , Estado Funcional , Resultado del Tratamiento , Equilibrio Postural , Envejecimiento/psicología , Persona de Mediana Edad , Evaluación Geriátrica
5.
Int J Food Sci Nutr ; 74(4): 556-567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37431100

RESUMEN

We investigated the extent to which adherence to the Mediterranean diet (MD) in combination with Mediterranean lifestyle factors influenced students' perceptions of subjective well-being (SWB) and distress. 939 undergraduates completed a survey to assess sociodemographic and lifestyle characteristics, including adherence to the MD, depression, anxiety, stress, and SWB. Data were analysed with correlation, logistic, and multiple linear regression models. Higher adherence to MD correlated with better SWB. Fruit, red meat, sweet and caffeinated beverages contributed significantly. However, it was the combination of adherence to MD with other factors, including quality of social relationships, income, smoking, sleep, and physical activity that better predicted SWB. Our results confirm the positive influence of MD on SWB. However, they also suggest the need to consider perceptions of well-being by a more holistic approach that considers physical and social factors simultaneously to improve the development of more effective educational and motivational programmes.


Asunto(s)
Dieta Mediterránea , Estilo de Vida , Humanos , Universidades , Estudiantes , Italia , Percepción
6.
Biomolecules ; 13(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509065

RESUMEN

Inflammation of the adipose tissue contributes to the onset and progression of several chronic obesity-related diseases. The two most important lipophilic diterpenoid compounds found in the root of Salvia milthorrhiza Bunge (also called Danshen), tanshinone IIA (TIIA) and cryptotanshinone (CRY), have many favorable pharmacological effects. However, their roles in obesity-associated adipocyte inflammation and related sub-networks have not been fully elucidated. In the present study, we investigated the gene, miRNAs and protein expression profile of prototypical obesity-associated dysfunction markers in inflamed human adipocytes treated with TIIA and CRY. The results showed that TIIA and CRY prevented tumor necrosis factor (TNF)-α induced inflammatory response in adipocytes, by counter-regulating the pattern of secreted cytokines/chemokines associated with adipocyte inflammation (CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, IL-6, IL-8, MIF and PAI-1/Serpin E1) via the modulation of gene expression (as demonstrated for CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, and IL-8), as well as related miRNA expression (miR-126-3p, miR-223-3p, miR-124-3p, miR-155-5p, and miR-132-3p), and by attenuating monocyte recruitment. This is the first demonstration of a beneficial effect by TIIA and CRY on adipocyte dysfunction associated with obesity development and complications, offering a new outlook for the prevention and/or treatment of metabolic diseases.


Asunto(s)
Quimiocina CCL5 , MicroARNs , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Interleucina-8/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adipocitos/metabolismo
7.
Nutrients ; 15(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375554

RESUMEN

Polyphenols are secondary plant metabolites derived from the shikimate/phenylpropanoid pathway, protecting plants from physical, chemical and biological stress [...].


Asunto(s)
Fenómenos Bioquímicos , Polifenoles , Polifenoles/farmacología , Polifenoles/metabolismo , Plantas/metabolismo , Disponibilidad Biológica
8.
Cancer Gene Ther ; 30(3): 394-403, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460805

RESUMEN

The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , MicroARNs , Neoplasias , Humanos , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Neoplasias/genética
9.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297375

RESUMEN

Osteoarthritis (OA) is a joint disease characterized by inflammation of the synovium, angiogenesis, cartilage degradation, and osteophyte formation. Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum) are plants which extracts, together to Bromelain and Escin (Aesculus hippocastanum) are traditionally used in OA. However, their mechanistic role remains unclear. We aimed to investigate whether these bioactives alone or in combination (as in Flonat Fast®) can suppress TNF-α-induced inflammation, angiogenesis, and osteophyte formation using two cell models involved in OA: endothelial cells and monocytes. Each plant extract was evaluated for its polyphenol content, antioxidant activity, and toxicity. In endothelial cells and monocytes, expression of genes involved in OA was assessed, functional assays for inflammation and angiogenesis were performed, and impairment of reactive oxygen species production (ROS) was evaluated. Exposure of cells to the bioactives alone and in combination before cytokine stimulation resulted in differential counterregulation of several gene and protein expressions, including those for cyclooxygenases-2, metalloproteinase-9, transforming growth factor ß1, and bone morphogenic protein-2. We demonstrated that these bioactives modulated monocyte adhesion to endothelial cells as well as cell migration and endothelial angiogenesis. Consistent with radical scavenging activity in the cell-free system, the bioactives curbed TNF-α-stimulated intracellular ROS production. We confirmed the potential anti-inflammatory and antiangiogenic effects of the combination of Harpagophytum procumbens, Boswellia, Curcuma, Bromelain, and Escin and provided new mechanistic evidence for their use in OA. However, further clinical studies are needed to evaluate the true clinical utility of these bioactives as supportive, preventive, and therapeutic agents.

10.
Foods ; 11(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36010524

RESUMEN

This review collects and critically examines data on the levels of tumour necrosis factor-alpha (TNF-α) in lean, overweight and obese subjects, and the effects of intervention with different foods and food products containing bioactive constituents in overweight/obese individuals. We additionally explore the influence of different single nucleotide polymorphisms (SNPs) on TNF-α levels and compare the response to food products with that to some anti-obesity drugs. Our aim was to provide an overview of the variability, consistency, and magnitude of the reported effects of dietary factors on TNF-α, and to envisage the reliability of measuring changes in the levels of this cytokine as a biomarker responsive to food intervention in association with the reduction in body weight. Regarding the circulating levels of TNF-α, we report: (i) a large intra-group variability, with most coefficients of variation (CV%) values being ≥30% and, in many cases, >100%; (ii) a large between-studies variability, with baseline TNF-α values ranging from <1.0 up to several hundred pg/mL; (iii) highly variable effects of the different dietary approaches with both statistically significant and not significant decreases or increases of the protein, and the absolute effect size varying from <0.1 pg/mL up to ≈50 pg/mL. Within this scenario of variability, it was not possible to discern clear differentiating limits in TNF-α between lean, overweight, and obese individuals or a distinct downregulatory effect on this cytokine by any of the different dietary approaches reviewed, i.e., polyunsaturated fatty acids (PUFAs), Vitamin-D (VitD), mixed (micro)nutrients, (poly)phenols or other phytochemicals. Further, there was not a clear relationship between the TNF-α responses and body weight changes. We found similarities between dietary and pharmacological treatments in terms of variability and limited evidence of the TNF-α response. Different factors that contribute to this variability are discussed and some specific recommendations are proposed to reinforce the need to improve future studies looking at this cytokine as a potential biomarker of response to dietary approaches.

11.
Nutrients ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807860

RESUMEN

Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.


Asunto(s)
Enfermedad Celíaca , Polifenoles , Dieta Sin Gluten , Glútenes/efectos adversos , Humanos , Calidad de Vida
12.
Ageing Res Rev ; 79: 101649, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35595185

RESUMEN

Cardiovascular and metabolic disorders present major causes of mortality in the ageing population. Polyphenols present in human diets possess cardiometabolic protective properties, however their underlying molecular mechanisms in humans are still not well identified. Even though preclinical and in vitro studies advocate that these bioactives can modulate gene expression, most studies were performed using targeted approaches. With the objective to decipher the molecular mechanisms underlying polyphenols cardiometabolic preventive properties in humans, we performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach. We identified 5 studies within our criteria and nearly 5000 differentially expressed genes, both mRNAs and miRNAs, in peripheral blood cells. Integrative bioinformatic analyses (e.g. pathway and gene network analyses, identification of transcription factors, correlation of gene expression profiles with those associated with diseases and drug intake) revealed that these genes are involved in the processes such as cell adhesion and mobility, immune system, metabolism, or cell signaling. We also identified 27 miRNAs known to regulate processes such as cell cytoskeleton, chemotaxis, cell signaling, or cell metabolism. Gene expression profiles negatively correlated with expression profiles of cardiovascular disease patients, while a positive correlation was observed with gene expression profiles following intake of drugs against cardiometabolic disorders. These analyses further advocate for health protective effects of these bioactives against age-associated diseases. In conclusion, polyphenols can exert multi-genomic modifications in humans and use of untargeted methods coupled with bioinformatic analyses represent the best approach to decipher molecular mechanisms underlying healthy-ageing effects of these bioactives.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Nutrigenómica , Polifenoles/farmacología , ARN Mensajero/genética
13.
Nutrients ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35334833

RESUMEN

Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of anti-oxidant polyphenols that are able to counteract chronic inflammatory symptoms. The aim of this study was to determine whether grape pomace polyphenolic extract (GPE) was able to mitigate the overwhelming inflammatory response in enterocyte-like cells and to improve vascular function. Intestinal epithelial Caco-2 cells, grown in monolayers or in co-culture with endothelial cells (Caco-2/HMEC-1), were treated with different concentrations of GPE (1, 5, 10 µg/mL gallic acid equivalents) for 2 h and then stimulated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α for 16 h. Through multiple assays, the expression of intestinal and endothelial inflammatory mediators, intracellular reactive oxygen species (ROS) levels and NF-κB activation, as well as endothelial-leukocyte adhesion, were evaluated. The results showed that GPE supplementation prevented, in a concentration-dependent manner, the intestinal expression and release of interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9 and MMP-2. In Caco-2 cells, GPE also suppressed the gene expression of several pro-inflammatory markers, such as IL-1ß, TNF-α, macrophage colony-stimulating factor (M-CSF), C-X-C motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (COX)-2. The GPE anti-inflammatory effect was mediated by the inhibition of NF-κB activity and reduced intracellular ROS levels. Furthermore, transepithelial GPE suppressed the endothelial expression of IL-6, MCP-1, VCAM-1, and ICAM-1 and the subsequent adhesion of leukocytes to the endothelial cells under pro-inflammatory conditions. In conclusion, our findings suggest grape pomace as a natural source of polyphenols with multiple health-promoting properties that could contribute to the mitigation of gut chronic inflammatory diseases and improve vascular endothelial function.


Asunto(s)
Células Endoteliales , Vitis , Células CACO-2 , Células Endoteliales/metabolismo , Humanos , Inflamación/metabolismo , Extractos Vegetales/farmacología
14.
Nutrients ; 13(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34836245

RESUMEN

Hydroxytyrosol (HT), a peculiar olive and olive oil phenolic antioxidant, plays a significant role in the endothelial and cardiovascular protection associated with olive oil consumption. However, studies examining the effects of HT on the whole-genome expression of endothelial cells, which are prominent targets for vasculo-protective effects of olive oil polyphenols, have been lacking. This study aims to comprehensively evaluate the genomic effects exerted by HT, at the transcriptional level, in endothelial cells under resting or proinflammatory conditions. Human umbilical vein endothelial cells (HUVECs) were treated with 10 µmol/L HT for 1 h and then stimulated with 5 ng/mL interleukin (IL)-1ß for 3 h. Total RNA was extracted, and gene expression profile assessed with microarray analysis. Functional enrichment analysis and pathway analysis were performed by Ingenuity Pathways Analysis. Microarray data were validated by qRT-PCR. Fixing a significance threshold at 1.5-fold change, HT affected the expression of 708 and 599 genes, respectively, in HUVECs under resting and IL-1ß-stimulated conditions; among these, 190 were common to both conditions. Unfolded protein response (UPR) and endoplasmic reticulum stress resulted from the two top canonical pathways common between HT and HT-IL-1ß affected genes. IL-17F/A signaling was found in the top canonical pathways of HT modified genes under resting unstimulated conditions, whereas cardiac hypertrophy signaling was identified among the pathways affected by HT-IL-1ß. The transcriptomic analysis allowed pinpointing immunological, inflammatory, proliferative, and metabolic-related pathways as the most affected by HT in endothelial cells. It also revealed previously unsuspected genes and related gene pathways affected by HT, thus broadening our knowledge of its biological properties. The unbiased identification of novel genes regulated by HT improves our understanding of mechanisms by which olive oil prevents or attenuates inflammatory diseases and identifies new genes to be enquired as potential contributors to the inter-individual variation in response to functional food consumption.


Asunto(s)
Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Nutrigenómica , Alcohol Feniletílico/análogos & derivados , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ontología de Genes , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Alcohol Feniletílico/farmacología , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Biomolecules ; 11(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34680177

RESUMEN

Although coffee consumption has been historically associated with negative health outcomes, recent evidence suggests a lower risk of metabolic syndrome, obesity and diabetes among regular coffee drinkers. Among the plethora of minor organic compounds assessed as potential mediators of coffee health benefits, trigonelline and its pyrolysis product N-methylpyridinium (NMP) were preliminary shown to promote glucose uptake and exert anti-adipogenic properties. Against this background, we aimed at characterizing the effects of trigonelline and NMP in inflamed and dysfunctional human adipocytes. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with NMP or, for comparison, trigonelline, for 5 h before stimulation with tumor necrosis factor (TNF)-α. NMP at concentrations as low as 1 µmol/L reduced the stimulated expression of several pro-inflammatory mediators, including C-C Motif chemokine ligand (CCL)-2, C-X-C Motif chemokine ligand (CXCL)-10, and intercellular adhesion Molecule (ICAM)-1, but left the induction of prostaglandin G/H synthase (PTGS)2, interleukin (IL)-1ß, and colony stimulating factor (CSF)1 unaffected. Furthermore, NMP restored the downregulated expression of adiponectin (ADIPOQ). These effects were functionally associated with downregulation of the adhesion of monocytes to inflamed adipocytes. Under the same conditions, NMP also reversed the TNF-α-mediated suppression of insulin-stimulated Ser473 Akt phosphorylation and attenuated the induction of TNF-α-stimulated lipolysis restoring cell fat content. In an attempt to preliminarily explore the underlying mechanisms of its action, we show that NMP restores the expression of the master regulator of adipocyte differentiation peroxisome proliferator-activated receptor (PPAR)γ and downregulates activation of the pro-inflammatory mitogen-activated protein jun N-terminal kinase (JNK). In conclusion, NMP reduces adipose dysfunction in pro-inflammatory activated adipocytes. These data suggest that bioactive NMP in coffee may improve the inflammatory and dysmetabolic milieu associated with obesity.


Asunto(s)
Adipocitos/metabolismo , Café/metabolismo , Resistencia a la Insulina/genética , Compuestos de Piridinio/farmacología , Factor de Necrosis Tumoral alfa/genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Diabetes Mellitus/dietoterapia , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Glucosa/metabolismo , Humanos , Inflamación/dietoterapia , Inflamación/genética , Inflamación/metabolismo , Insulina/genética , Síndrome Metabólico/dietoterapia , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Obesidad/dietoterapia , Obesidad/genética , Obesidad/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
16.
Nutrients ; 13(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34371836

RESUMEN

Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.


Asunto(s)
Síndrome Metabólico/prevención & control , Fenómenos Fisiológicos de la Nutrición/genética , Polifenoles/farmacología , Sustancias Protectoras/farmacología , Adulto , Factores de Riesgo Cardiometabólico , Biología Computacional , Femenino , Humanos , Masculino , Síndrome Metabólico/genética , MicroARNs/sangre , Persona de Mediana Edad , Nutrigenómica , ARN Mensajero/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
17.
Mol Nutr Food Res ; 65(16): e2100227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048642

RESUMEN

SCOPE: Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS: To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION: This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Dieta , Nutrigenómica , Polifenoles/administración & dosificación , Animales , Biología Computacional , Regulación de la Expresión Génica , Ratones , Ratas
18.
Nutrients ; 12(10)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992649

RESUMEN

This study provides comprehensive validation of the 14-item Mediterranean Diet Adherence Screener (14-MEDAS) in an adult population from Greece (GR), Portugal (PT), Italy (IT), Spain (SP), Cyprus (CY), Republic of North Macedonia (NMK), and Bulgaria (BG). A moderate association between the 14-MEDAS and the reference food diary was estimated for the entire population (Pearson r = 0.573, p-value < 0.001; Intraclass Correlation Coefficient (ICC) = 0.692, p-value < 0.001) with the strongest correlation found in GR, followed by PT, IT, SP, and CY. These results were supported by kappa statistics in GR, PT, IT, and SP with ≥50% of food items exhibiting a fair or better agreement. Bland-Altman analyses showed an overestimation of the 14-MEDAS score in the whole population (0.79 ± 1.81, 95%Confidence Interval (CI) 0.61, 0.96), but this value was variable across countries, with GR, NMK, and BG exhibiting the lowest bias. Taking all analyses together, the validation achieved slightly better results in the Mediterranean countries but a definitive validation ranking order was not evident. Considering growing evidence of the shift from Mediterranean Diet (MD) adherence and of the importance of culture in making food choices it is crucial that we further improve validation protocols with specific applications to compare MD adherence across countries.


Asunto(s)
Encuestas sobre Dietas , Dieta Mediterránea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Registros de Dieta , Europa (Continente) , Conducta Alimentaria , Femenino , Humanos , Masculino , Tamizaje Masivo , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven
19.
Nutrients ; 12(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466599

RESUMEN

The increasing access to antihypertensive medications has improved longevity and quality of life in hypertensive patients. Nevertheless, hypertension still remains a major risk factor for stroke and myocardial infarction, suggesting the need to implement management of pre- and hypertensive patients. In addition to antihypertensive medications, lifestyle changes, including healthier dietary patterns, such as the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet, have been shown to favorably affect blood pressure and are now recommended as integrative tools in hypertension management. An analysis of the effects of nutritional components of the Mediterranean diet(s) on blood pressure has therefore become mandatory. After a literature review of the impact of Mediterranean diet(s) on cardiovascular risk factors, we here analyze the effects of olive oil and its major components on blood pressure in healthy and cardiovascular disease individuals and examine underlying mechanisms of action. Both experimental and human studies agree in showing anti-hypertensive effects of olive oil. We conclude that due to its high oleic acid and antioxidant polyphenol content, the consumption of olive oil may be advised as the optimal fat choice in the management protocols for hypertension in both healthy and cardiovascular disease patients.


Asunto(s)
Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Aceite de Oliva/uso terapéutico , Antioxidantes/uso terapéutico , Bases de Datos Factuales , Dieta Mediterránea , Humanos , Ácido Oléico/uso terapéutico , Polifenoles , Calidad de Vida , Factores de Riesgo , Accidente Cerebrovascular/tratamiento farmacológico
20.
Eur J Nutr ; 59(6): 2603-2615, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31624866

RESUMEN

PURPOSE: The aim of the study was to evaluate the vascular health properties of extracts from biofortified bread, obtained by adding different durum wheat milling by-products rich in phenolic compounds, by analyzing their effects on overwhelming inflammatory response in endothelial cells and monocytes, two main players of atherogenesis. METHODS: Human umbilical vein endothelial cells or U937 monocytes were incubated with increasing concentrations (1, 5, 10 µg/mL) of biofortified bread polyphenol extracts or corresponding pure phenolic acids before stimulation with lipopolysaccharide (LPS). We analyzed the endothelial-monocyte adhesion and related endothelial adhesion molecules. The expression of chemokines and pro-inflammatory cytokines was also measured in LPS-stimulated endothelial cells and monocytes as well as intracellular oxidative stress. RESULTS: Biofortified bread extracts inhibited monocyte adhesion to LPS-stimulated endothelial cells, in a concentration-dependent manner by reducing mainly endothelial VCAM-1 expression. Phenolic acid extracts contained in 10 mg biofortified bread downregulated the LPS-induced expression of chemokines MCP-1, M-CSF, and CXCL-10 as well as pro-inflammatory cytokines TNF-α and IL-1ß, in endothelial cells and monocytes, with CXCL-10 as the most reduced inflammatory mediator. Among phenolic acids of biofortified bread, ferulic, sinapic, and p-coumaric acids significantly inhibited the LPS-stimulated CXCL-10 expression in vascular cells. The reduced pro-inflammatory response was related to a slightly but significant reduction of intracellular oxidative stress. CONCLUSIONS: Our findings suggest the bread biofortified with selected durum wheat milling by-products as a source of phenolic acids with multiple anti-inflammatory and anti-atherosclerotic properties, which could help to counteract or prevent inflammatory vascular diseases.


Asunto(s)
Pan , Quimiocina CXCL10 , Alimentos Fortificados , Células Endoteliales de la Vena Umbilical Humana , Monocitos , Polifenoles , Molécula 1 de Adhesión Celular Vascular , Adhesión Celular , Humanos , Hidroxibenzoatos , Inflamación , Triticum , Molécula 1 de Adhesión Celular Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA