Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cell Oncol ; 2(2): e975638, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27308434

RESUMEN

Autophagy degrades the cellular proteome to promote survival, but the underlying mechanism and substrates of consequence are poorly understood. We found that autophagy selectively remodels the proteome in cancer cells by eliminating proinflammatory signaling proteins. Autophagy ablation causes aberrant accumulation of these proteins that primes cancer cells for interferon-dependent cell death, explaining how autophagy suppresses inflammation and promotes tumor maintenance.

2.
Mol Cell ; 55(6): 916-930, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25175026

RESUMEN

Ras-driven cancer cells upregulate basal autophagy that degrades and recycles intracellular proteins and organelles. Autophagy-mediated proteome degradation provides free amino acids to support metabolism and macromolecular synthesis, which confers a survival advantage in starvation and promotes tumorigenesis. While the degradation of isolated protein substrates by autophagy has been implicated in controlling cellular function, the extent and specificity by which autophagy remodels the cellular proteome and the underlying functional consequences were unknown. Here we compared the global proteome of autophagy-functional and -deficient Ras-driven cancer cells, finding that autophagy affects the majority of the proteome yet is highly selective. While levels of vesicle trafficking proteins important for autophagy are preserved during starvation-induced autophagy, deleterious inflammatory response pathway components are eliminated even under basal conditions, preventing cytokine-induced paracrine cell death. This reveals the global, functional impact of autophagy-mediated proteome remodeling on cell survival and identifies critical autophagy substrates that mediate this process.


Asunto(s)
Autofagia , Inmunidad Innata , Proteoma/fisiología , Proteínas ras/genética , Animales , Línea Celular Tumoral , Supervivencia Celular , Humanos , Ratones , Transporte de Proteínas , Vesículas Transportadoras
3.
Mol Syst Biol ; 9: 712, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24301801

RESUMEN

Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC-MS-based isotope tracer studies with oxygen uptake measurements in a quantitative redox-balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine-driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine-driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hipoxia de la Célula/fisiología , Glutamina/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Adenosina Trifosfato/análisis , Animales , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Redes y Vías Metabólicas , Ratones , Neoplasias/metabolismo , Biología de Sistemas
4.
Cancer Discov ; 3(11): 1272-85, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23965987

RESUMEN

UNLABELLED: Autophagic elimination of defective mitochondria suppresses oxidative stress and preserves mitochondrial function. Here, the essential autophagy gene Atg7 was deleted in a mouse model of BrafV600E-induced lung cancer in the presence or absence of the tumor suppressor Trp53. Atg7 deletion initially induced oxidative stress and accelerated tumor cell proliferation in a manner indistinguishable from Nrf2 ablation. Compound deletion of Atg7 and Nrf2 had no additive effect, suggesting that both genes modulate tumorigenesis by regulating oxidative stress and revealing a potential mechanism of autophagy-mediated tumor suppression. At later stages of tumorigenesis, Atg7 deficiency resulted in an accumulation of defective mitochondria, proliferative defects, reduced tumor burden, conversion of adenomas and adenocarcinomas to oncocytomas, and increased mouse life span. Autophagy-defective tumor-derived cell lines were impaired in their ability to respire and survive starvation and were glutamine-dependent, suggesting that autophagy-supplied substrates from protein degradation sustains BrafV600E tumor growth and metabolism. SIGNIFICANCE: The essential autophagy gene Atg7 functions to promote BrafV600E-driven lung tumorigenesis by preserving mitochondrial glutamine metabolism. This suggests that inhibiting autophagy is a novel approach to treating BrafV600E-driven cancers.


Asunto(s)
Autofagia/fisiología , Glutamina/metabolismo , Neoplasias Pulmonares/patología , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Adenocarcinoma/patología , Adenoma/patología , Adenoma Oxifílico/patología , Animales , Proteína 7 Relacionada con la Autofagia , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Genes Dev ; 27(13): 1447-61, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23824538

RESUMEN

Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 (atg7) was deleted concurrently with K-ras(G12D) activation in mouse models for non-small-cell lung cancer (NSCLC). atg7-deficient tumors accumulated dysfunctional mitochondria and prematurely induced p53 and proliferative arrest, which reduced tumor burden that was partly relieved by p53 deletion. atg7 loss altered tumor fate from adenomas and carcinomas to oncocytomas-rare, predominantly benign tumors characterized by the accumulation of defective mitochondria. Surprisingly, lipid accumulation occurred in atg7-deficient tumors only when p53 was deleted. atg7- and p53-deficient tumor-derived cell lines (TDCLs) had compromised starvation survival and formed lipidic cysts instead of tumors, suggesting defective utilization of lipid stores. atg7 deficiency reduced fatty acid oxidation (FAO) and increased sensitivity to FAO inhibition, indicating that with p53 loss, Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. Thus, autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas. Moreover, cancers require autophagy for distinct roles in metabolism that are oncogene- and tumor suppressor gene-specific.


Asunto(s)
Adenoma Oxifílico/fisiopatología , Autofagia , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Genes ras/fisiología , Metabolismo de los Lípidos , Neoplasias Pulmonares/fisiopatología , Animales , Línea Celular Tumoral , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Genes p53/genética , Homeostasis , Longevidad/genética , Ratones , Mitocondrias/patología , Células Tumorales Cultivadas
6.
Proc Natl Acad Sci U S A ; 110(22): 8882-7, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671091

RESUMEN

Cancer cell growth requires fatty acids to replicate cellular membranes. The kinase Akt is known to up-regulate fatty acid synthesis and desaturation, which is carried out by the oxygen-consuming enzyme stearoyl-CoA desaturase (SCD)1. We used (13)C tracers and lipidomics to probe fatty acid metabolism, including desaturation, as a function of oncogene expression and oxygen availability. During hypoxia, flux from glucose to acetyl-CoA decreases, and the fractional contribution of glutamine to fatty acid synthesis increases. In addition, we find that hypoxic cells bypass de novo lipogenesis, and thus, both the need for acetyl-CoA and the oxygen-dependent SCD1-reaction, by scavenging serum fatty acids. The preferred substrates for scavenging are phospholipids with one fatty acid tail (lysophospholipids). Hypoxic reprogramming of de novo lipogenesis can be reproduced in normoxic cells by Ras activation. This renders Ras-driven cells, both in culture and in allografts, resistant to SCD1 inhibition. Thus, a mechanism by which oncogenic Ras confers metabolic robustness is through lipid scavenging.


Asunto(s)
Hipoxia de la Célula/fisiología , Ácidos Grasos/metabolismo , Lipogénesis/fisiología , Neoplasias/fisiopatología , Estearoil-CoA Desaturasa/metabolismo , Proteínas ras/metabolismo , Animales , Autofagia/fisiología , Isótopos de Carbono/química , Línea Celular Tumoral , Proliferación Celular , Ácidos Grasos/sangre , Glucosa/química , Glutamina/química , Humanos , Ratones , Ratones Noqueados , Consumo de Oxígeno/fisiología , Fosfolípidos/metabolismo , Pinocitosis/fisiología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética , Proteínas ras/genética
7.
PLoS One ; 7(7): e41831, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848625

RESUMEN

mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC) cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs) and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Metabolismo Basal/efectos de los fármacos , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Necrosis , Oxidación-Reducción/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Prostate ; 72(12): 1374-81, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22241682

RESUMEN

PURPOSE: Targeting multiple anti-apoptotic proteins is now possible with the small molecule BH3 domain mimetics such as ABT-737. Given recent studies demonstrating that autophagy is a resistance mechanism to multiple therapeutic agents in the setting of apoptotic inhibition, we hypothesized that hydroxychloroquine (HCQ), an anti-malarial drug that inhibits autophagy, will increase cytotoxicity of ABT-737. EXPERIMENTAL DESIGN: Cytotoxicity of ABT-737 and HCQ was assessed in vitro in PC-3 and LNCaP cells, and in vivo in a xenograft mouse model. The role of autophagy as a resistance mechanism was assessed by siRNA knockdown of the essential autophagy gene beclin1. ROS was measured by flow cytometry, and mitophagy assessed by the mCherry-Parkin reporter. RESULTS: Induction of autophagy by ABT-737 was a mechanism of resistance in prostate cancer cell lines. Therapeutic inhibition of autophagy with HCQ increased cytotoxicity of ABT-737 both in vitro and in vivo. ABT-737 induced LC-3 and decreased p62 expression by immunoblot in cell lines and by immunohistochemistry in tumors in vivo. Assessment of ROS and mitochondria demonstrated that ROS production by ABT-737 and HCQ was a mechanism of cytotoxicity. CONCLUSIONS: We demonstrated that autophagy inhibition with HCQ enhances ABT-737 cytotoxicity in vitro and in vivo, that LC-3 and p62 represent assessable markers in human tissue for future clinical trials, and that ROS induction is a mechanism of cytotoxicity. These results support a new paradigm of dual targeting of apoptosis and autophagy in future clinical studies.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Animales , Apoptosis/fisiología , Autofagia/fisiología , Compuestos de Bifenilo/administración & dosificación , Línea Celular Tumoral , Quimioterapia Combinada , Humanos , Hidroxicloroquina/administración & dosificación , Masculino , Ratones , Ratones Desnudos , Nitrofenoles/administración & dosificación , Piperazinas/administración & dosificación , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/administración & dosificación , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Genes Dev ; 25(5): 460-70, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21317241

RESUMEN

Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras(V12) or K-ras(V12) oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis. In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this "autophagy addiction" suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.


Asunto(s)
Autofagia/fisiología , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Células HCT116 , Humanos , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Inanición
10.
Curr Opin Genet Dev ; 21(1): 113-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21255998

RESUMEN

Autophagy is the mechanism by which cells consume parts of themselves to survive starvation and stress. This self-cannibalization limits cell death and tissue inflammation, recycles energy and biosynthetic substrates and removes damaged proteins and organelles, accumulation of which is toxic. In normal tissues, autophagy-mediated damage mitigation may suppress tumorigenesis, while in advanced tumors macromolecular recycling may support survival by buffering metabolic demand under stress. As a result, autophagy-activation in normal cells may suppress tumorigenesis, while autophagy inhibition may be beneficial for the therapy of established tumors. The mechanisms by which autophagy supports cancer cell metabolism are slowly emerging. As cancer is being increasingly recognized as a metabolic disease, how autophagy-mediated catabolism impacts cellular and mammalian metabolism and tumor growth is of great interest. Most cancer therapeutics induce autophagy, either directly by modulating signaling pathways that control autophagy in the case of many targeted therapies, or indirectly in the case of cytotoxic therapy. However, the functional consequence of autophagy induction in the context of cancer therapy is not yet clear. A better understanding of how autophagy modulates cell metabolism under various cellular stresses and the consequences of this on tumorigenesis will help develop better therapeutic strategies against cancer prevention and treatment.


Asunto(s)
Autofagia , Transformación Celular Neoplásica/metabolismo , Metabolismo Energético , Animales , Supervivencia Celular , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estrés Fisiológico
11.
Curr Opin Cell Biol ; 22(2): 212-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20056400

RESUMEN

Autophagy is a crucial component of the cellular stress adaptation response that maintains mammalian homeostasis. Autophagy protects against neurodegenerative and inflammatory conditions, aging, and cancer. This is accomplished by the degradation and intracellular recycling of cellular components to maintain energy metabolism and by damage mitigation through the elimination of damaged proteins and organelles. How autophagy modulates oncogenesis is gradually emerging. Tumor cells induce autophagy in response to metabolic stress to promote survival, suggesting deployment of therapeutic strategies to block autophagy for cancer therapy. By contrast, defects in autophagy lead to cell death, chronic inflammation, and genetic instability. Thus, stimulating autophagy may be a powerful approach for chemoprevention. Analogous to infection or toxins that create persistent tissue damage and chronic inflammation that increases the incidence of cancer, defective autophagy represents a cell-intrinsic mechanism to create the damaging, inflammatory environment that predisposes to cancer. Thus, cellular damage mitigation through autophagy is a novel mechanism of tumor suppression.


Asunto(s)
Autofagia , Inflamación/patología , Neoplasias/patología , Animales , Supervivencia Celular , Enfermedad , Humanos , Modelos Biológicos
12.
Cell ; 137(6): 1062-75, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524509

RESUMEN

Allelic loss of the essential autophagy gene beclin1 occurs in human cancers and renders mice tumor-prone suggesting that autophagy is a tumor-suppression mechanism. While tumor cells utilize autophagy to survive metabolic stress, autophagy also mitigates the resulting cellular damage that may limit tumorigenesis. In response to stress, autophagy-defective tumor cells preferentially accumulated p62/SQSTM1 (p62), endoplasmic reticulum (ER) chaperones, damaged mitochondria, reactive oxygen species (ROS), and genome damage. Moreover, suppressing ROS or p62 accumulation prevented damage resulting from autophagy defects indicating that failure to regulate p62 caused oxidative stress. Importantly, sustained p62 expression resulting from autophagy defects was sufficient to alter NF-kappaB regulation and gene expression and to promote tumorigenesis. Thus, defective autophagy is a mechanism for p62 upregulation commonly observed in human tumors that contributes directly to tumorigenesis likely by perturbing the signal transduction adaptor function of p62-controlling pathways critical for oncogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Neoplasias/metabolismo , Aneuploidia , Animales , Apoptosis , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , FN-kappa B/metabolismo , Neoplasias/genética , Estrés Oxidativo , Proteína Disulfuro Isomerasas/metabolismo , Proteína Sequestosoma-1 , Factor de Transcripción TFIIH , Factores de Transcripción
13.
Methods Enzymol ; 453: 53-81, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19216902

RESUMEN

Autophagy is a survival mechanism activated in response to metabolic stress. In normal tissues autophagy plays a major role in energy homeostasis through catabolic self-digestion of damaged proteins and organelles. Contrary to its survival function, autophagy defects are implicated in tumorigenesis suggesting that autophagy is a tumor suppression mechanism. Although the exact mechanism of this tumor suppressor function is not known, it likely involves mitigation of cellular damage leading to chromosomal instability. The complex role of functional autophagy in tumors calls for model systems that allow the assessment of autophagy status, stress management and the impact on oncogenesis both in vitro as well as in vivo. We developed model systems that involve generation of genetically defined, isogenic and immortal epithelial cells from different tissue types that are applicable to both wild-type and mutant mice. This permits the study of tissue- as well as gene-specific tumor promoting functions. We successfully employed this strategy to generate isogenic, immortal epithelial cell lines from wild-type and mutant mice deficient in essential autophagy genes such as beclin 1 (beclin 1(+/-)) and atg5 (atg 5(-/-)). As these cell lines are amenable to further genetic manipulation, they allowed us to generate cell lines with apoptosis defects and stable expression of the autophagy marker EGFP-LC3 that facilitate in vitro and in vivo assessment of stress-mediated autophagy induction. We applied this model system to directly monitor autophagy in cells and 3D-morphogenesis in vitro as well as in tumor allografts in vivo. Using this model system we demonstrated that autophagy is a survival response in solid tumors that co-localizes with hypoxic regions, allowing tolerance to metabolic stress. Furthermore, our studies have established that autophagy also protects tumor cells from genome damage and limits cell death and inflammation as possible means to tumor suppression. Additionally these cell lines provide an efficient way to perform biochemical analyses, and high throughput screening for modulators of autophagy for potential use in cancer therapy and prevention.


Asunto(s)
Autofagia/fisiología , Células Epiteliales/citología , Neoplasias/patología , Estrés Fisiológico/fisiología , Animales , Autofagia/genética , Células Cultivadas , Células Epiteliales/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/metabolismo , Estrés Fisiológico/genética
14.
Prostate ; 68(16): 1743-52, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18767033

RESUMEN

BACKGROUND: Autophagy is a starvation induced cellular process of self-digestion that allows cells to degrade cytoplasmic contents. The understanding of autophagy, as either a mechanism of resistance to therapies that induce metabolic stress, or as a means to cell death, is rapidly expanding and supportive of a new paradigm of therapeutic starvation. METHODS: To determine the effect of therapeutic starvation in prostate cancer, we studied the effect of the prototypical inhibitor of metabolism, 2-deoxy-D-glucose (2DG), in multiple cellular models including a transfected pEGFP-LC3 autophagy reporter construct in PC-3 and LNCaP cells. RESULTS: We found that 2DG induced cytotoxicity in PC-3 and LNCaP cells in a dose dependent fashion. We also found that 2DG modulated checkpoint proteins cdk4, and cdk6. Using the transfected pEGFP-LC3 autophagy reporter construct, we found that 2DG induced LC3 membrane translocation, characteristic of autophagy. Furthermore, knockdown of beclin1, an essential regulator of autophagy, abrogated 2DG induced autophagy. Using Western analysis for LC3 protein, we also found increased LC3-II expression in 2DG treated cells, again consistent with autophagy. In an effort to develop markers that may be predictive of autophagy, for assessment in clinical trials, we stained human prostate tumors for Beclin1 by immunohistochemistry (IHC). Additionally, we used a digitized imaging algorithm to quantify Beclin1 staining assessment. These data demonstrate the induction of autophagy in prostate cancer by therapeutic starvation with 2DG, and support the feasibility of assessment of markers predictive of autophagy such as Beclin1 that can be utilized in clinical trials. Prostate 68: 1743-1752 (c) 2008 Wiley-Liss, Inc. These data demonstrate the induction of autophagy in prostate cancer by therapeutic starvation with 2DG, and support the feasibility of assessment of markers predictive of autophagy such as Beclin1 that can be utilized in clinical trials.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Autofagia/fisiología , Modelos Biológicos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Inanición/metabolismo , Algoritmos , Antimetabolitos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Beclina-1 , Caspasas/metabolismo , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Desoxiglucosa/farmacología , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Terapia Nutricional/métodos
15.
Methods Enzymol ; 446: 77-106, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18603117

RESUMEN

Human cancer cell lines are widely used to model cancer but also have serious limitations. As an alternate approach, we have developed immortalized mouse epithelial cell model systems that are applicable to different tissue types and involve generation of immortalized cell lines that are genetically defined. By applying these model systems to mutant mice, we have extended the powerful approach of mouse genetics to in vitro analysis. By use of this model we have generated immortal epithelial cells that are either competent or deficient for apoptosis by different gain- and loss-of-function mutations that have revealed important mechanisms of tumor progression and treatment resistance. Furthermore, we have derived immortalized, isogenic mouse kidney, mammary, prostate, and ovarian epithelial cell lines to address the issues of tissue specificity. One of the major advantages of these immortalized mouse epithelial cell lines is the ability to perform biochemical analysis, screening, and further genetic manipulations. Moreover, the ability to generate tumor allografts in mice allows the integration of in vitro and in vivo approaches to delineate the mechanistic aspects of tumorigenesis. These model systems can be used effectively to determine the molecular requirements of epithelial tumorigenesis and tumor-promoting functions. This approach provides an efficient way to study the role of apoptosis in cancer and also enables the interrogation and identification of potential chemotherapeutic targets involving this pathway. Applying this technology to other mouse models can provide insight into additional aspects of oncogenesis.


Asunto(s)
Apoptosis/fisiología , Células Epiteliales/citología , Neoplasias/patología , Animales , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Riñón/citología , Masculino , Ratones , Ovario/citología , Próstata/citología , Proteína de Retinoblastoma/genética , Proteína p53 Supresora de Tumor/genética
16.
Cancer Res ; 68(11): 4105-15, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18519669

RESUMEN

Most tumors are epithelial-derived, and although disruption of polarity and aberrant cellular junction formation is a poor prognosticator in human cancer, the role of polarity determinants in oncogenesis is poorly understood. Using in vivo selection, we identified a mammalian orthologue of the Drosophila polarity regulator crumbs as a gene whose loss of expression promotes tumor progression. Immortal baby mouse kidney epithelial cells selected in vivo to acquire tumorigenicity displayed dramatic repression of crumbs3 (crb3) expression associated with disruption of tight junction formation, apicobasal polarity, and contact-inhibited growth. Restoration of crb3 expression restored junctions, polarity, and contact inhibition while suppressing migration and metastasis. These findings suggest a role for mammalian polarity determinants in suppressing tumorigenesis that may be analogous to the well-studied polarity tumor suppressor mechanisms in Drosophila.


Asunto(s)
Proteínas de la Membrana/fisiología , Neoplasias Glandulares y Epiteliales/patología , Uniones Estrechas , Animales , División Celular , Línea Celular , Expresión Génica , Genes Supresores de Tumor , Inmunohistoquímica , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Ratones , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos
17.
Nat Rev Cancer ; 7(12): 961-7, 2007 12.
Artículo en Inglés | MEDLINE | ID: mdl-17972889

RESUMEN

Autophagy is a cellular degradation pathway for the clearance of damaged or superfluous proteins and organelles. The recycling of these intracellular constituents also serves as an alternative energy source during periods of metabolic stress to maintain homeostasis and viability. In tumour cells with defects in apoptosis, autophagy allows prolonged survival. Paradoxically, autophagy defects are associated with increased tumorigenesis, but the mechanism behind this has not been determined. Recent evidence suggests that autophagy provides a protective function to limit tumour necrosis and inflammation, and to mitigate genome damage in tumour cells in response to metabolic stress.


Asunto(s)
Autofagia , Neoplasias/patología , Antineoplásicos/farmacología , Apoptosis , Autofagia/efectos de los fármacos , Autofagia/genética , Supervivencia Celular , Quimioprevención/métodos , Daño del ADN , Genes Supresores de Tumor , Humanos , Necrosis/patología , Neoplasias/genética , Neoplasias/terapia , Estrés Fisiológico/patología
18.
J Nat Prod ; 70(10): 1551-7, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17900165

RESUMEN

Four new diterpenes ( 1- 4) were isolated from the soft coral Xenia elongata using a novel cell-based screen for apoptosis-inducing, potential anticancer compounds. The molecular structures of the diterpenes were determined using a combination of NMR and mass spectrometry. The bioactivities were confirmed using a specific apoptosis induction assay based on genetically engineered mammalian lines with differential, defined capacities for apoptosis. The diterpenes induce apoptosis in micromolar concentrations. This is the first report of apoptosis induction by marine diterpenes in xenicane skeletons.


Asunto(s)
Antozoos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Animales , Antineoplásicos/química , Diterpenos/química , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
19.
Genes Dev ; 21(13): 1621-35, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17606641

RESUMEN

Autophagy is a catabolic process involving self-digestion of cellular organelles during starvation as a means of cell survival; however, if it proceeds to completion, autophagy can lead to cell death. Autophagy is also a haploinsufficient tumor suppressor mechanism for mammary tumorigenesis, as the essential autophagy regulator beclin1 is monoallelically deleted in breast carcinomas. However, the mechanism by which autophagy suppresses breast cancer remains elusive. Here we show that allelic loss of beclin1 and defective autophagy sensitized mammary epithelial cells to metabolic stress and accelerated lumen formation in mammary acini. Autophagy defects also activated the DNA damage response in vitro and in mammary tumors in vivo, promoted gene amplification, and synergized with defective apoptosis to promote mammary tumorigenesis. Therefore, we propose that autophagy limits metabolic stress to protect the genome, and that defective autophagy increases DNA damage and genomic instability that ultimately facilitate breast cancer progression.


Asunto(s)
Autofagia/fisiología , Carcinoma/patología , Daño del ADN/fisiología , Neoplasias Mamarias Animales/patología , Estrés Fisiológico/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Beclina-1 , Carcinoma/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Amplificación de Genes/fisiología , Predisposición Genética a la Enfermedad , Inestabilidad Genómica/fisiología , Pérdida de Heterocigocidad/fisiología , Neoplasias Mamarias Animales/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas/genética , Células Tumorales Cultivadas
20.
Autophagy ; 3(5): 502-5, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17611387

RESUMEN

Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.


Asunto(s)
Autofagia/fisiología , Neoplasias/etiología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Homeostasis , Humanos , Modelos Biológicos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA