Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 18(3): e0282921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996254

RESUMEN

Necrotic and dying cells release damage-associated molecular patterns (DAMPs) that can initiate sterile inflammatory responses in the heart. Although macrophages are essential for myocardial repair and regeneration, the effect of DAMPs on macrophage activation remains unclear. To address this gap in knowledge we studied the effect of necrotic cardiac myocyte extracts on primary peritoneal macrophage (PPM) cultures in vitro. We first performed unbiased transcriptomic profiling with RNA-sequencing of PPMs cultured for up to 72 hours in the presence and absence of: 1) necrotic cell extracts (NCEs) from necrotic cardiac myocytes in order to mimic the release of DAMPs; 2) lipopolysaccharide (LPS), which is known to polarize macrophages towards a classically activated phenotype and 3) Interleukin-4 (IL-4), which is known to promote polarization of macrophages towards an alternatively activated phenotype. NCEs provoke changes in differential gene expression (DEGs) that had considerable overlap with LPS-induced changes, suggesting that NCEs promote macrophage polarization towards a classically activated phenotype. Treating NCEs with proteinase-K abolished the effects of NCEs on macrophage activation, whereas NCE treatment with DNase and RNase did not affect macrophage activation. Stimulation of macrophage cultures with NCEs and LPS resulted in a significant increase in macrophage phagocytosis and interleukin-1ß secretion, whereas treatment with IL-4 had no significant effect on phagocytosis and interleukin-1ß. Taken together, our findings suggest that proteins released from necrotic cardiac myocytes are sufficient to skew the polarization of macrophages towards a classically activated phenotype.


Asunto(s)
Interleucina-4 , Miocitos Cardíacos , Humanos , Interleucina-4/farmacología , Interleucina-4/metabolismo , Interleucina-1beta/metabolismo , Activación de Macrófagos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Fenotipo , Necrosis/metabolismo
2.
Function (Oxf) ; 1(1): zqaa004, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865539

RESUMEN

Dramatic cardiomegaly arising from gain-of-function (GoF) mutations in the ATP-sensitive potassium (KATP) channels genes, ABCC9 and KCNJ8, is a characteristic feature of Cantú syndrome (CS). How potassium channel over-activity results in cardiac hypertrophy, as well as the long-term consequences of cardiovascular remodeling in CS, is unknown. Using genome-edited mouse models of CS, we therefore sought to dissect the pathophysiological mechanisms linking KATP channel GoF to cardiac remodeling. We demonstrate that chronic reduction of systemic vascular resistance in CS is accompanied by elevated renin-angiotensin signaling, which drives cardiac enlargement and blood volume expansion. Cardiac enlargement in CS results in elevation of basal cardiac output, which is preserved in aging. However, the cardiac remodeling includes altered gene expression patterns that are associated with pathological hypertrophy and are accompanied by decreased exercise tolerance, suggestive of reduced cardiac reserve. Our results identify a high-output cardiac hypertrophy phenotype in CS which is etiologically and mechanistically distinct from other myocardial hypertrophies, and which exhibits key features of high-output heart failure (HOHF). We propose that CS is a genetically-defined HOHF disorder and that decreased vascular smooth muscle excitability is a novel mechanism for HOHF pathogenesis.


Asunto(s)
Mutación con Ganancia de Función , Canales KATP , Ratones , Animales , Canales KATP/genética , Mutación con Ganancia de Función/genética , Remodelación Ventricular , Receptores de Sulfonilureas/genética , Cardiomegalia/genética , Adenosina Trifosfato
3.
J Am Heart Assoc ; 9(16): e015690, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32805188

RESUMEN

Background Mutations in the LMNA gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (Lmna-/-), and gain-of-function (Lmna-/- injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function. Deletion of Lmna (Lmna-/-) led to differential expression of 2193 coding and 629 long noncoding RNA genes in the heart (q<0.05). Re-expression of LMNA in the Lmna-/- mouse heart, completely rescued 501 coding and 208 non-coding and partially rescued 1862 coding and 607 lncRNA genes. Pathway analysis of differentially expressed genes predicted activation of transcriptional regulators lysine-specific demethylase 5A, lysine-specific demethylase 5B, tumor protein 53, and suppression of retinoblastoma 1, paired-like homeodomain 2, and melanocyte-inducing transcription factor, which were completely or partially rescued upon reexpression of LMNA. Furthermore, lysine-specific demethylase 5A and 5B protein levels were increased in the Lmna-/- hearts and were partially rescued upon LMNA reexpression. Analysis of biological function for rescued genes identified activation of tumor necrosis factor-α, epithelial to mesenchymal transition, and suppression of the oxidative phosphorylation pathway upon Lmna deletion and their restoration upon LMNA reintroduction in the heart. Restoration of the gene expression and transcriptional regulators in the heart was associated with improved cardiac function and increased survival of the Lmna-/- mice. Conclusions The findings identify LMNA-regulated cardiac genes and their upstream transcriptional regulators in the heart and implicate lysine-specific demethylase 5A and B as epigenetic regulators of a subset of the dysregulated genes in laminopathies.


Asunto(s)
Regulación de la Expresión Génica , Lamina Tipo A/fisiología , Laminopatías/genética , Miocardio/metabolismo , ARN Largo no Codificante/metabolismo , Elementos Reguladores de la Transcripción , Animales , Epigénesis Genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Fenotipo , ARN Mensajero
4.
JCI Insight ; 4(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672943

RESUMEN

Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages. Inflammasome activation and IL-1ß secretion are implicated in myocardial infarction (MI) and resultant heart failure; however, little is known about how macrophage lysosomes regulate these processes. In mice subjected to cardiac ischemia/reperfusion (IR) injury and humans with ischemic cardiomyopathy, we observed evidence of lysosomal impairment in macrophages. Inducible macrophage-specific overexpression of transcription factor EB (TFEB), a master regulator of lysosome biogenesis (Mϕ-TFEB), attenuated postinfarction remodeling, decreased abundance of proinflammatory macrophages, and reduced levels of myocardial IL-1ß compared with controls. Surprisingly, neither inflammasome suppression nor Mϕ-TFEB-mediated attenuation of postinfarction myocardial dysfunction required intact ATG5-dependent macroautophagy (hereafter termed "autophagy"). RNA-seq of flow-sorted macrophages postinfarction revealed that Mϕ-TFEB upregulated key targets involved in lysosomal lipid metabolism. Specifically, inhibition of the TFEB target, lysosomal acid lipase, in vivo abrogated the beneficial effect of Mϕ-TFEB on postinfarction ventricular function. Thus, TFEB reprograms macrophage lysosomal lipid metabolism to attenuate remodeling after IR, suggesting an alternative paradigm whereby lysosome function affects inflammation.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/fisiología , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Macrófagos/metabolismo , Infarto del Miocardio/fisiopatología , Disfunción Ventricular , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
5.
JCI Insight ; 52019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31162139

RESUMEN

Whereas prior studies have demonstrated an important immunomodulatory role for the neuronal cholinergic system in the heart, the role of the non-neuronal cholinergic system is not well understood. To address the immunomodulatory role of the non-neuronal cholinergic system in the heart we used a previously validated diphtheria toxin (DT)-induced cardiomyocyte ablation model (Rosa26-DTMlc2v-Cre mice). DT-injected Rosa26-DTMlc2v-Cre mice were treated with diluent or Pyridostigmine Bromide (PYR), a reversible cholinesterase inhibitor. PYR treatment resulted in increased survival and decreased numbers of MHC-IIlowCCR2+ macrophages in DT-injected Rosa26-DTMlc2v-Cre mice compared to diluent treated Rosa26-DTMlc2v-Cre mice. Importantly, the expression of CCL2/7 mRNA and protein was reduced in the hearts of PYR-treated mice. Backcrossing Rosa26-DTMlc2v-Cre mice with a transgenic mouse line (Chat-ChR2) that constitutively overexpresses the vesicular acetylcholine transporter (VAChT) resulted in decreased expression of Ccl2/7 mRNA and decreased numbers of CD68+ cells in DT-injured Rosa26-DTMlc2v-Cre/Chat-ChR2 mouse hearts, consistent with the pharmacologic studies with PYR. In vitro studies with cultures of LPS-stimulated peritoneal macrophages revealed a concentration-dependent reduction in CCL2 secretion following stimulation with ACh, nicotine and muscarine. Viewed together, these findings reveal a previously unappreciated immunomodulatory role for the non-neuronal cholinergic system in regulating homeostatic responses in the heart following tissue injury.


Asunto(s)
Colinérgicos/inmunología , Colinérgicos/metabolismo , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/microbiología , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Quimiocinas/metabolismo , Toxina Diftérica/efectos adversos , Modelos Animales de Enfermedad , Femenino , Homeostasis , Inflamación/inmunología , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , ARN Mensajero/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina
6.
Circ Res ; 124(8): 1198-1213, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30739589

RESUMEN

RATIONALE: LMNA (Lamin A/C), a nuclear membrane protein, interacts with genome through lamin-associated domains (LADs) and regulates gene expression. Mutations in the LMNA gene cause a diverse array of diseases, including dilated cardiomyopathy (DCM). DCM is the leading cause of death in laminopathies. OBJECTIVE: To identify LADs and characterize their associations with CpG methylation and gene expression in human cardiac myocytes in DCM. METHODS AND RESULTS: LMNA chromatin immunoprecipitation-sequencing, reduced representative bisulfite sequencing, and RNA-sequencing were performed in 5 control and 5 LMNA-associated DCM hearts. LADs were identified using enriched domain detector program. Genome-wide 331±77 LADs with an average size of 2.1±1.5 Mbp were identified in control human cardiac myocytes. LADs encompassed ≈20% of the genome and were predominantly located in the heterochromatin and less so in the promoter and actively transcribed regions. LADs were redistributed in DCM as evidenced by a gain of 520 and loss of 149 genomic regions. Approximately, 4500 coding genes and 800 long noncoding RNAs, whose levels correlated with the transcript levels of coding genes in cis, were differentially expressed in DCM. TP53 (tumor protein 53) was the most prominent among the dysregulated pathways. CpG sites were predominantly hypomethylated genome-wide in controls and DCM hearts, but overall CpG methylation was increased in DCM. LADs were associated with increased CpG methylation and suppressed gene expression. Integrated analysis identified genes whose expressions were regulated by LADs or CpG methylation, or by both, the latter pertained to genes involved in cell death, cell cycle, and metabolic regulation. CONCLUSIONS: LADs encompass ≈20% of the genome in human cardiac myocytes comprised several hundred coding and noncoding genes. LADs are redistributed in LMNA-associated DCM in association with markedly altered CpG methylation and gene expression. Thus, LADs through genomic alterations contribute to the pathogenesis of DCM in laminopathies.


Asunto(s)
Cardiomiopatía Dilatada/genética , Metilación de ADN , Regulación de la Expresión Génica , Lamina Tipo A/genética , Miocitos Cardíacos , Adulto , Núcleo Celular , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Islas de CpG/genética , Femenino , Heterocromatina/genética , Humanos , Masculino , Técnicas de Amplificación de Ácido Nucleico , ARN/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
FASEB J ; 33(1): 652-667, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028636

RESUMEN

Lipin 1 regulates glycerolipid homeostasis by acting as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride-synthesis pathway and by regulating transcription factor activity. Mutations in human lipin 1 are a common cause of recurrent rhabdomyolysis in children. Mice with constitutive whole-body lipin 1 deficiency have been used to examine mechanisms connecting lipin 1 deficiency to myocyte injury. However, that mouse model is confounded by lipodystrophy not phenocopied in people. Herein, 2 muscle-specific mouse models were studied: 1) Lpin1 exon 3 and 4 deletion, resulting in a hypomorphic protein without PAP activity, but which preserved transcriptional coregulatory function; and 2) Lpin1 exon 7 deletion, resulting in total protein loss. In both models, skeletal muscles exhibited a chronic myopathy with ongoing muscle fiber necrosis and regeneration and accumulation of phosphatidic acid and, paradoxically, diacylglycerol. Additionally, lipin 1-deficient mice had abundant, but abnormal, mitochondria likely because of impaired autophagy. Finally, these mice exhibited increased plasma creatine kinase following exhaustive exercise when unfed. These data suggest that mice lacking lipin 1-mediated PAP activity in skeletal muscle may serve as a model for determining the mechanisms by which lipin 1 deficiency leads to myocyte injury and for testing potential therapeutic approaches.-Schweitzer, G. G., Collier, S. L., Chen, Z., McCommis, K. S., Pittman, S. K., Yoshino, J., Matkovich, S. J., Hsu, F.-F., Chrast, R., Eaton, J. M., Harris, T. E., Weihl, C. C., Finck, B. N. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Músculo Esquelético/patología , Enfermedades Musculares/patología , Proteínas Nucleares/fisiología , Fosfatidato Fosfatasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Autofagia , Femenino , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/fisiología
8.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089727

RESUMEN

Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.


Asunto(s)
Cardiomegalia/fisiopatología , Ventrículos Cardíacos/fisiopatología , Hipertricosis/fisiopatología , Canales KATP/metabolismo , Osteocondrodisplasias/fisiopatología , Receptores de Sulfonilureas/metabolismo , Animales , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Modelos Animales de Enfermedad , Ecocardiografía , Acoplamiento Excitación-Contracción/genética , Femenino , Mutación con Ganancia de Función , Técnicas de Sustitución del Gen , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hipertricosis/diagnóstico , Hipertricosis/genética , Canales KATP/genética , Masculino , Ratones , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiopatología , Miocitos Cardíacos , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Técnicas de Placa-Clamp , Receptores de Sulfonilureas/genética , Vasodilatación/genética , Remodelación Ventricular/genética
9.
J Mol Cell Cardiol ; 121: 60-68, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29969579

RESUMEN

G-protein receptor kinases (GRKs) regulate adult hearts by modulating inotropic, chronotropic and hypertrophic signaling of 7-transmembrane spanning neurohormone receptors. GRK-mediated desensitization and downregulation of ß-adrenergic receptors has been implicated in adult heart failure; GRKs are therefore a promising therapeutic target. However, germ-line (but not cardiomyocyte-specific) GRK2 deletion provoked lethal fetal heart defects, suggesting an unexplained role for GRKs in heart development. Here we undertook to better understand the consequences of GRK deficiency on fetal heart development by creating mice and cultured murine embryonic fibroblasts (MEFs) having floxed GRK2 and GRK5 alleles on the GRK6 null background; simultaneous conditional deletion of these 3 GRK genes was achieved using Nkx2-5 Cre or adenoviral Cre, respectively. Phenotypes were related to GRK-modulated gene expression using whole-transcriptome RNA sequencing, RT-qPCR, and luciferase reporter assays. In cultured MEFs the atypical 7-transmembrane spanning protein and GRK2 substrate Smoothened (Smo) stimulated Gli-mediated transcriptional activity, which was interrupted by deleting GRK2/5/6. Mice with Nkx2-5 Cre mediated GRK2/5/6 ablation died between E15.5 and E16.5, whereas mice expressing any one of these 3 GRKs (i.e. GRK2/5, GRK2/6 or GRK5/6 deleted) were developmentally normal. GRK2/5/6 triple null mice at E14.5 exhibited left and right heart blood intermixing through single atrioventricular valves or large membranous ventricular septal defects. Hedgehog and GATA pathway gene expression promoted by Smo/Gli was suppressed in GRK2/5/6 deficient fetal hearts and MEFs. These data indicate that GRK2, GRK5 and GRK6 redundantly modulate Smo-GATA crosstalk in fetal mouse hearts, orchestrating transcriptional pathways previously linked to clinical and experimental atrioventricular canal defects. GRK modulation of Smo reflects convergence of conventional neurohormonal signaling and transcriptional regulation pathways, comprising an unanticipated mechanism for spatiotemporal orchestration of developmental gene expression in the heart.


Asunto(s)
Corazón Fetal/crecimiento & desarrollo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Receptor Smoothened/genética , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Corazón Fetal/fisiopatología , Fibroblastos/metabolismo , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Análisis de Secuencia de ARN , Transcriptoma/genética
10.
JCI Insight ; 3(11)2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29875326

RESUMEN

Despite the long-standing recognition that the immune response to acute myocardial injury contributes to adverse left ventricular (LV) remodeling, it has not been possible to effectively target this clinically. Using 2 different in vivo models of acute myocardial injury, we show that pirfenidone confers beneficial effects in the murine heart through an unexpected mechanism that depends on cardiac B lymphocytes. Naive hearts contained a large population of CD19+CD11b-CD23-CD21-IgD+IgMlo lymphocytes, and 2 smaller populations of CD19+CD11b+ B1a and B1b cells. In response to tissue injury, there was an increase in neutrophils, monocytes, macrophages, as well as an increase in CD19+ CD11b- B lymphocytes. Treatment with pirfenidone had no effect on the number of neutrophils, monocytes, or macrophages, but decreased CD19+CD11b- lymphocytes. B cell depletion abrogated the beneficial effects of pirfenidone. In vitro studies demonstrated that stimulation with lipopolysaccharide and extracts from necrotic cells activated CD19+ lymphocytes through a TIRAP-dependent pathway. Treatment with pirfenidone attenuated this activation of B cells. These findings reveal a previously unappreciated complexity of myocardial B lymphocytes within the inflammatory infiltrate triggered by cardiac injury and suggest that pirfenidone exerts beneficial effects in the heart through a unique mechanism that involves modulation of cardiac B lymphocytes.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Ventrículos Cardíacos/efectos de los fármacos , Infarto del Miocardio/inmunología , Piridonas/administración & dosificación , Remodelación Ventricular/efectos de los fármacos , Animales , Subgrupos de Linfocitos B/efectos de los fármacos , Toxina Diftérica/administración & dosificación , Toxina Diftérica/inmunología , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/inmunología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Activación de Linfocitos/efectos de los fármacos , Depleción Linfocítica/métodos , Ratones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/citología , Miocardio/inmunología , Miocardio/patología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Remodelación Ventricular/inmunología
11.
Circ Heart Fail ; 11(5): e004351, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29716898

RESUMEN

BACKGROUND: To better understand reverse left ventricular (LV) remodeling, we developed a murine model wherein mice develop LV remodeling after transverse aortic constriction (TAC) and a small apical myocardial infarct (MI) and undergo reverse LV remodeling after removal of the aortic band. METHODS AND RESULTS: Mice studied were subjected to sham (n=6) surgery or TAC+MI (n=12). Two weeks post-TAC+MI, 1 group underwent debanding (referred to as heart failure debanding [HF-DB] mice; n=6), whereas the aortic band remained in a second group (heart failure [HF] group; n=6). LV remodeling was evaluated by 2D echocardiography at 1 day, 2 weeks and 6 weeks post-TAC+MI. The hearts were analyzed by transcriptional profiling at 4 and 6 weeks and histologically at 6 weeks. Debanding normalized LV volumes, LV mass, and cardiac myocyte hypertrophy at 6 weeks in HF-DB mice, with no difference in myofibrillar collagen in the HF and HF-DB mice. LV ejection fraction and radial strain improved after debanding; however, both remained decreased in the HF-DB mice relative to sham and were not different from HF mice at 6 weeks. Hemodynamic unloading in the HF-DB mice was accompanied by a 35% normalization of the HF genes at 2 weeks and 80% of the HF genes at 4 weeks. CONCLUSIONS: Hemodynamic unloading of a pathophysiologically relevant mouse model of HF results in normalization of LV structure, incomplete recovery of LV function, and incomplete reversal of the HF transcriptional program. The HF-DB mouse model may provide novel insights into mechanisms of reverse LV remodeling.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica/fisiología , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Función Ventricular Izquierda/fisiología
12.
PLoS One ; 11(6): e0158317, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27359099

RESUMEN

Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCß1b. Previous studies from our group showed that increasing PLCß1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCß1b and PLCß1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCß1b hearts without evidence of induced hypertrophy. Expression of PLCß1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCß1a caused similar mild expression changes to PLCß1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCß1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Corazón/fisiopatología , Fosfolipasa C beta/genética , Análisis de Secuencia de ARN/métodos , Animales , Dependovirus/genética , Regulación de la Expresión Génica , Ratones , Contracción Miocárdica , Miocardio/metabolismo , Fosfolipasa C beta/metabolismo , Sitios de Empalme de ARN , Transducción de Señal , Transcripción Genética
13.
Sci Signal ; 8(373): ra39, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25900833

RESUMEN

Cell growth is orchestrated by changes in gene expression that respond to developmental and environmental cues. Among the signaling pathways that direct growth are enzymes of the protein kinase C (PKC) family, which are ubiquitous proteins belonging to three distinct subclasses: conventional PKCs, novel PKCs, and atypical PKCs. Functional overlap makes determining the physiological actions of different PKC isoforms difficult. We showed that two novel PKC isoforms, PKCδ and PKCε, redundantly govern stress-reactive and developmental heart growth by modulating the expression of cardiac genes central to stress-activated protein kinase and periostin signaling. Mice with combined postnatal cardiomyocyte-specific genetic ablation of PKCδ and germline deletion of PKCε (DCKO) had normally sized hearts, but their hearts had transcriptional changes typical of pathological hypertrophy. Cardiac hypertrophy and dysfunction induced by hemodynamic overloading were greater in DCKO mice than in mice with a single deletion of either PKCδ or PKCε. Furthermore, gene expression analysis of the hearts of DCKO mice revealed transcriptional derepression of the genes encoding the kinase ERK (extracellular signal-regulated kinase) and periostin. Mice with combined embryonic ablation of PKCδ and PKCε showed enhanced growth and cardiomyocyte hyperplasia that induced pathological ventricular stiffening and early lethality, phenotypes absent in mice with a single deletion of PKCδ or PKCε. Our results indicate that novel PKCs provide retrograde feedback inhibition of growth signaling pathways central to cardiac development and stress adaptation. These growth-suppressing effects of novel PKCs have implications for therapeutic inhibition of PKCs in cancer, heart, and other diseases.


Asunto(s)
Cardiomegalia/metabolismo , Corazón/fisiología , Proteína Quinasa C-delta/genética , Proteína Quinasa C-epsilon/genética , Animales , Cardiomegalia/patología , Ecocardiografía , Eliminación de Gen , Regulación de la Expresión Génica , Genoma , Células HEK293 , Hemodinámica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Musculares/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Transducción de Señal
14.
Circ Res ; 116(5): e28-39, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25605649

RESUMEN

RATIONALE: Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and overexpression of Gq and CaMKIIδ recapitulates hypertrophy decompensation. OBJECTIVE: To determine whether CaMKIIδ contributes to hypertrophy decompensation provoked by Gq. METHODS AND RESULTS: Compared with Gq mice, compound Gq/CaMKIIδ knockout mice developed a similar degree of cardiac hypertrophy but exhibited significantly improved left ventricular function, less cardiac fibrosis and cardiomyocyte apoptosis, and fewer ventricular arrhythmias. Markers of oxidative stress were elevated in mitochondria from Gq versus wild-type mice and respiratory rates were lower; these changes in mitochondrial function were restored by CaMKIIδ deletion. Gq-mediated increases in mitochondrial oxidative stress, compromised membrane potential, and cell death were recapitulated in neonatal rat ventricular myocytes infected with constitutively active Gq and attenuated by CaMKII inhibition. Deep RNA sequencing revealed altered expression of 41 mitochondrial genes in Gq hearts, with normalization of ≈40% of these genes by CaMKIIδ deletion. Uncoupling protein 3 was markedly downregulated in Gq or by Gq expression in neonatal rat ventricular myocytes and reversed by CaMKIIδ deletion or inhibition, as was peroxisome proliferator-activated receptor α. The protective effects of CaMKIIδ inhibition on reactive oxygen species generation and cell death were abrogated by knock down of uncoupling protein 3. Conversely, restoration of uncoupling protein 3 expression attenuated reactive oxygen species generation and cell death induced by CaMKIIδ. Our in vivo studies further demonstrated that pressure overload induced decreases in peroxisome proliferator-activated receptor α and uncoupling protein 3, increases in mitochondrial protein oxidation, and hypertrophy decompensation, which were attenuated by CaMKIIδ deletion. CONCLUSIONS: Mitochondrial gene reprogramming induced by CaMKIIδ emerges as an important mechanism contributing to mitotoxicity in decompensating hypertrophy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Cardiomegalia/enzimología , Cardiomiopatía Dilatada/etiología , Insuficiencia Cardíaca/etiología , Mitocondrias Cardíacas/fisiología , Acetilcisteína/farmacología , Animales , Apoptosis , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia/fisiopatología , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/prevención & control , Células Cultivadas , Progresión de la Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/fisiopatología , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Canales Iónicos/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , PPAR alfa/biosíntesis , PPAR alfa/genética , Mutación Puntual , Presión , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Ratas , Especies Reactivas de Oxígeno , Análisis de Secuencia de ARN , Sulfonamidas/farmacología , Transfección , Proteína Desacopladora 3
15.
J Immunol ; 191(12): 5904-13, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24227772

RESUMEN

NK cells are innate lymphocytes important for host defense against viral infections and malignancy. However, the molecular programs orchestrating NK cell activation are incompletely understood. MicroRNA-155 (miR-155) is markedly upregulated following cytokine activation of human and mouse NK cells. Surprisingly, mature human and mouse NK cells transduced to overexpress miR-155, NK cells from mice with NK cell-specific miR-155 overexpression, and miR-155(-/-) NK cells all secreted more IFN-γ compared with controls. Investigating further, we found that activated NK cells with miR-155 overexpression had increased per-cell IFN-γ with normal IFN-γ(+) percentages, whereas greater percentages of miR-155(-/-) NK cells were IFN-γ(+). In vivo murine CMV-induced IFN-γ expression by NK cells in these miR-155 models recapitulated the in vitro phenotypes. We performed unbiased RNA-induced silencing complex sequencing on wild-type and miR-155(-/-) NK cells and found that mRNAs targeted by miR-155 were enriched in NK cell activation signaling pathways. Using specific inhibitors, we confirmed these pathways were mechanistically involved in regulating IFN-γ production by miR-155(-/-) NK cells. These data indicate that miR-155 regulation of NK cell activation is complex and that miR-155 functions as a dynamic tuner for NK cell activation via both setting the activation threshold as well as controlling the extent of activation in mature NK cells. In summary, miR-155(-/-) NK cells are more easily activated, through increased expression of proteins in the PI3K, NF-κB, and calcineurin pathways, and miR-155(-/-) and 155-overexpressing NK cells exhibit increased IFN-γ production through distinct cellular mechanisms.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/fisiología , MicroARNs/fisiología , Transducción de Señal/fisiología , Animales , Calcineurina/fisiología , Células Cultivadas , Infecciones por Citomegalovirus/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Vectores Genéticos/genética , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/biosíntesis , MicroARNs/genética , Modelos Inmunológicos , FN-kappa B/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ARN , Organismos Libres de Patógenos Específicos , Transducción Genética , Regulación hacia Arriba
16.
J Biol Chem ; 288(22): 15455-65, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23603904

RESUMEN

Several Bcl2 family proteins are expressed both as mitochondrial-targeted full-length and as cytosolic truncated alternately spliced isoforms. Recombinantly expressed shorter Bcl2 family isoforms can heterotypically bind to and prevent mitochondrial localization of their full-length analogs, thus suppressing their activity by sequestration. This "sponge" role requires 1:1 expression stoichiometry; absent this an alternate role is suggested. Here, RNA sequencing revealed coordinate regulation of BH3-only protein Nix/Bnip3L (Nix) and its alternately spliced soluble form (sNix) in hearts, but relative sNix/Nix expression of ∼1:10. Accordingly, we examined other putative functions of sNix. Although Nix expressed in H9c2 rat myoblasts localized to mitochondria, sNix showed variable cytoplasmic and nuclear distribution. Tumor necrosis factor α (TNFα) induced rapid and complete sNix nucleoplasmic translocation concomitant with nuclear translocation of the p65/RelA subunit of NFκB. sNix co-localized and co-precipitated with p65/RelA after TNFα stimulation; TNFα-induced sNix nuclear translocation did not occur in p65/RelA null murine embryonic fibroblasts. ChIP sequencing of TNFα-stimulated H9c2 cells revealed sNix suppression of p65/RelA binding to a subset of weaker DNA binding sites, accounting for its ability to alter gene expression in cultured cells and in vivo mouse hearts. These findings reveal TNFα-stimulated cytoplasmic-nuclear shuttling of the alternately spliced non-mitochondrial Nix isoform and uncover a role for sNix as a modulator of TNFα/NFκB-stimulated cardiac gene expression. Transcriptional co-regulation of sNix and Nix, combined with sNix posttranslational regulation by TNFα, comprises a previously unknown mechanism for molecular cross-talk between extrinsic death receptor and intrinsic mitochondrial apoptosis pathways.


Asunto(s)
Empalme Alternativo/fisiología , Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Núcleo Celular/genética , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Mioblastos Cardíacos/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
17.
Circ Res ; 110(7): 958-67, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22374132

RESUMEN

RATIONALE: MyomiRs miR-499, miR-208a and miR-208b direct cardiac myosin gene expression. Sequence complementarity between miRs and their mRNA targets determines miR effects, but the functional consequences of human myomiR sequence variants are unknown. OBJECTIVE: To identify and investigate mutations in human myomiRs in order to better understand how and to what extent naturally-occurring sequence variation can impact miR-mRNA targeting and end-organ function. METHODS AND RESULTS: Screening of ≈2,600 individual DNAs for myomiR sequence variants identified a rare mutation of miR-499, u17c in the 3' end, well outside the seed region thought to determine target recognition. In vitro luciferase reporter analysis showed that the 3' miR-499 mutation altered suppression of a subset of artificial and natural mRNA targets. Cardiac-specific transgenic expression was used to compare consequences of wild-type and mutant miR-499. Both wild-type and mutant miR-499 induced heart failure in mice, but miR-499 c17 misdirected recruitment of a subset of miR-499 target mRNAs to cardiomyocyte RNA-induced silencing complexes, altering steady-state cardiac mRNA and protein make-up and favorably impacting cardiac function. In vitro analysis of miR-499 target site mutations and modeling of binding energies revealed abnormal miR-mRNA duplex configurations induced by the c17 mutation. CONCLUSIONS: A naturally occurring miR-499 mutation outside the critical seed sequence modifies mRNA targeting and end-organ function. This first description of in vivo effects from a natural human miR mutation outside the seed sequence supports comprehensive studies of individual phenotypes or disease-modification conferred by miR mutations.


Asunto(s)
Corazón/fisiopatología , MicroARNs/genética , Mutación/genética , Miocardio/metabolismo , ARN Mensajero/metabolismo , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Miosinas/genética , Miosinas/metabolismo , Proteómica
18.
Circ Res ; 107(7): 903-12, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20689063

RESUMEN

RATIONALE: Protein kinase (PK)Cs and calpain cysteine proteases are highly expressed in myocardium. Ischemia produces calcium overload that activates calpains and conventional PKCs. However, calpains can proteolytically process PKCs, and the potential in vivo consequences of this interaction are unknown. OBJECTIVE: To determine the biochemical and pathophysiological consequences of calpain-mediated cardiac PKCα proteolysis. METHODS AND RESULTS: Isolated mouse hearts subjected to global ischemia/reperfusion demonstrated cleavage of PKCα. Calpain 1 overexpression was not sufficient to produce PKCα cleavage in normal hearts, but ischemia-induced myocardial PKCα cleavage and myocardial injury were greatly increased by cardiac-specific expression of calpain 1. In contrast, calpain 1 gene ablation or inhibition with calpastatin prevented ischemia/reperfusion induced PKCα cleavage; infarct size was decreased and ventricular function enhanced in infarcted calpain 1 knockout hearts. To determine consequences of PKCα fragmentation on myocardial protein phosphorylation, transgenic mice were created conditionally expressing full-length PKCα or its N-terminal and C-terminal calpain 1 cleavage fragments. Two-dimensional mapping of ventricular protein extracts showed a distinct PKCα phosphorylation profile that was exaggerated and distorted in hearts expressing the PKCα C-terminal fragment. MALDI mass spectroscopy revealed hyperphosphorylation of myosin-binding protein C and phosphorylation of atypical substrates by the PKCα C-terminal fragment. Expression of parent PKCα produced a mild cardiomyopathy, whereas myocardial expression of the C-terminal PKCα fragment induced a disproportionately severe, rapidly lethal cardiomyopathy. CONCLUSIONS: Proteolytic processing of PKCα by calcium-activated calpain activates pathological cardiac signaling through generation of an unregulated and/or mistargeted kinase. Production of the PKCα C-terminal fragment in ischemic hearts occurs via a receptor-independent mechanism.


Asunto(s)
Calpaína/metabolismo , Cardiomiopatías/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteína Quinasa C-alfa/metabolismo , Animales , Calcio/metabolismo , Cardiomiopatías/patología , Proteínas Portadoras/metabolismo , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Fosforilación/fisiología , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
19.
Proc Natl Acad Sci U S A ; 107(20): 9035-42, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20418503

RESUMEN

Dysregulation of programmed cell death due to abnormal expression of Bcl-2 proteins is implicated in cancer, neurodegenerative diseases, and heart failure. Among Bcl-2 family members, BNip proteins uniquely stimulate cell death with features of both apoptosis and necrosis. Localization of these factors to mitochondria and endoplasmic reticulum (ER) provides additional complexity. Previously, we observed regulation of intracellular calcium stores by reticular Nix. Here, we report effects of Nix targeting to mitochondria or ER on cell death pathways and heart failure progression. Nix-deficient fibroblasts expressing mitochondrial-directed or ER-directed Nix mutants exhibited similar cytochrome c release, caspase activation, annexin V and TUNEL labeling, and cell death. ER-Nix cells, but not mitochondrial-Nix cells, showed dissipation of mitochondrial inner membrane potential, Deltapsi(m), and were protected from cell death by cyclosporine A or ppif ablation, implicating the mitochondrial permeability transition pore (MPTP). ER-Nix cells were not protected from death by caspase inhibition or combined ablation of Bax and Bak. Combined inhibition of caspases and the MPTP fully protected against Nix-mediated cell death. To determine the role of the dual pathways in heart failure, mice conditionally overexpressing Nix or Nix mutants in hearts were created. Cardiomyocte death caused by mitochondrial- and ER-directed Nix was equivalent, but ppif ablation fully protected only ER-Nix. Thus, Nix stimulates dual autonomous death pathways, determined by its subcellular localization. Mitochondrial Nix activates Bax/Bak- and caspase-dependent apoptosis, whereas ER-Nix activates Bax/Bak-independent, MPTP-dependent necrosis. Complete protection against programmed cell death mediated by Nix and related factors can be achieved by simultaneous inhibition of both pathways.


Asunto(s)
Apoptosis/fisiología , Cardiomiopatías/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Necrosis/metabolismo , Transducción de Señal/fisiología , Animales , Caspasas/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Etiquetado Corte-Fin in Situ , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Mutantes , Microscopía Fluorescente , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
20.
Circulation ; 117(3): 396-404, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18178777

RESUMEN

BACKGROUND: Pathological cardiac hypertrophy inevitably remodels, leading to functional decompensation. Although modulation of apoptosis-regulating genes occurs in cardiac hypertrophy, a causal role for programmed cardiomyocyte death in left ventricular (LV) remodeling has not been established. METHODS AND RESULTS: We targeted the gene for proapoptotic Nix, which is transcriptionally upregulated in pressure overload and Gq-dependent hypertrophies, in the mouse germ line or specifically in cardiomyocytes (knockout [KO]) and conditionally overexpressed it in the heart (transgenic [TG]). Conditional forced Nix expression acted synergistically with the prohypertrophic Gq transgene to increase cardiomyocyte apoptosis (0.8+/-0.1% in GqTG versus 7.8+/-0.6% in GqTG+NixTG; P<0.001), causing lethal cardiomyopathy with LV dilation and depressed systolic function (percent fractional shortening, 39+/-4 versus 23+/-4; P=0.042). In the reciprocal experiment, germ-line Nix ablation significantly reduced cardiomyocyte apoptosis (4.8+/-0.2% in GqTG+NixKO versus 8.4+/-0.5% in GqTG; P=0.001), which improved percent fractional shortening (43+/-3% versus 27+/-3%; P=0.017), attenuated LV remodeling, and largely prevented lethality in the Gq peripartum model of apoptotic cardiomyopathy. Cardiac-specific (Nkx2.5-Cre) Nix KO mice subjected to transverse aortic constriction developed significantly less LV dilation by echocardiography and magnetic resonance imaging, maintained concentric remodeling, and exhibited preserved LV ejection fraction (61+/-2% in transverse aortic constriction cardiac Nix KO versus 36+/-6% in transverse aortic constriction wild-type mice; P=0.003) at 9 weeks, with reduced cardiomyocyte apoptosis at day 4 (1.70+/-0.21% versus 2.73+/-0.35%; P=0.032). CONCLUSIONS: Nix-induced cardiomyocyte apoptosis is a major determinant of adverse remodeling in pathological hypertrophies, a finding that suggests therapeutic value for apoptosis inhibition to prevent cardiomyopathic decompensation.


Asunto(s)
Apoptosis , Fibrosis/patología , Hipertrofia/patología , Miocardio/patología , Proteínas Proto-Oncogénicas/fisiología , Remodelación Ventricular , Animales , Fibrosis/etiología , Insuficiencia Cardíaca , Humanos , Hipertrofia/etiología , Proteínas de la Membrana/fisiología , Ratones , Miocitos Cardíacos/patología , Proteínas Supresoras de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA