Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Commun ; 15(1): 3749, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702311

RESUMEN

Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Animales , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Femenino , Ratones , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Artículo en Inglés | MEDLINE | ID: mdl-38621606

RESUMEN

PURPOSE: Proton minibeam radiation therapy (pMBRT) is an innovative radiation therapy approach that highly modulates the spatial dimension of the dose delivery using narrow, parallel, and submillimetric proton beamlets. pMBRT has proven its remarkable healthy tissue preservation in the brain and skin. This study assesses the potential advantages of pMBRT for thoracic irradiations compared with conventional radiation therapy in terms of normal tissue toxicity. The challenge here was the influence of respiratory motion on the typical peak and valley dose patterns of pMBRT and its potential biologic effect. METHODS AND MATERIALS: The whole thorax of naïve C57BL/6 mice received one fraction of high dose (18 Gy) pMBRT or conventional proton therapy (CPT) without any respiratory control. The development of radiation-induced pulmonary fibrosis was longitudinally monitored using cone beam computed tomography. Anatomopathologic analysis was carried out at 9 months postirradiation and focused on the reaction of the lungs' parenchyma and the response of cell types involved in the development of radiation-induced fibrosis and lung regeneration as alveolar type II epithelial cells, club cells, and macrophages. RESULTS: pMBRT has milder effects on survival, skin reactions, and lung fibrosis compared with CPT. The pMBRT-induced lung changes were more regional and less severe, with evidence of potential reactive proliferation of alveolar type II epithelial cells and less extensive depletion of club cells and macrophage invasion than the more damaging effects observed in CPT. CONCLUSIONS: pMBRT appears suitable to treat moving targets, holding a significant ability to preserve healthy lung tissue, even without respiratory control or precise targeting.

3.
Cells ; 13(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201309

RESUMEN

The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.


Asunto(s)
Filamentos Intermedios , Vimentina , Movimiento Celular , Citoplasma , Membrana Celular
4.
Nat Aging ; 3(10): 1251-1268, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723209

RESUMEN

Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.


Asunto(s)
Lamina Tipo A , Macrófagos Alveolares , Animales , Ratones , Lamina Tipo A/genética , Membrana Nuclear , Pulmón , Envejecimiento/genética , Inestabilidad Genómica
5.
J Exp Med ; 220(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36820829

RESUMEN

In innate immune cells, intracellular sensors such as cGAS-STING stimulate type I/III interferon (IFN) expression, which promotes antiviral defense and immune activation. However, how IFN-I/III expression is controlled in adaptive cells is poorly understood. Here, we identify a transcriptional rheostat orchestrated by RELA that confers human T cells with innate-like abilities to produce IFN-I/III. Despite intact cGAS-STING signaling, IFN-I/III responses are stunted in CD4+ T cells compared with dendritic cells or macrophages. We find that lysine residues in RELA tune the IFN-I/III response at baseline and in response to STING stimulation in CD4+ T cells. This response requires positive feedback driven by cGAS and IRF7 expression. By combining RELA with IRF3 and DNA demethylation, IFN-I/III production in CD4+ T cells reaches levels observed in dendritic cells. IFN-I/III production provides self-protection of CD4+ T cells against HIV infection and enhances the elimination of tumor cells by CAR T cells. Therefore, innate-like functions can be tuned and leveraged in human T cells.


Asunto(s)
Infecciones por VIH , Interferón Tipo I , Humanos , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Linfocitos T/metabolismo , Factor de Transcripción ReIA
6.
J Cell Sci ; 135(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074045

RESUMEN

A feature of HIV-1 replication in macrophages is that viral assembly occurs at the limiting membrane of a compartment often named the virus-containing compartment (VCC). Assembled virions accumulate in the lumen of the VCC, from where they can be released into the extracellular medium via mechanisms that remain poorly described. Here, we show that the actin cytoskeleton contributes to this process by performing experiments combining pharmacological and mechanical perturbations with imaging and biochemical analysis. We found that jasplakinolide inhibited HIV-1 release from macrophages and led to scattering of the compartment. Concomitantly, both the integrin CD18 (ß2-integrin) and the phosphorylated form of PYK2 (also known as PTK2B) were displaced away from the VCC. Inhibition of PYK2 activity promoted retention of viral particles in VCCs that lost their connections to the surface. Finally, in infected macrophages undergoing frustrated phagocytosis, VCCs rapidly trafficked to the basal membrane and released their viral content, in a manner dependent on their association with the actin cytoskeleton. These results highlight that the trafficking of VCCs and virus release are intimately linked to a reorganization of the macrophage actin cytoskeleton that can be modulated by external physical cues.


Asunto(s)
VIH-1 , Quinasa 2 de Adhesión Focal , Integrinas , Macrófagos , Microtúbulos
7.
Cancer Discov ; 12(11): 2606-2625, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36027053

RESUMEN

It is currently accepted that cancer-associated fibroblasts (CAF) participate in T-cell exclusion from tumor nests. To unbiasedly test this, we used single-cell RNA sequencing coupled with multiplex imaging on a large cohort of lung tumors. We identified four main CAF populations, two of which are associated with T-cell exclusion: (i) MYH11+αSMA+ CAF, which are present in early-stage tumors and form a single cell layer lining cancer aggregates, and (ii) FAP+αSMA+ CAF, which appear in more advanced tumors and organize in patches within the stroma or in multiple layers around tumor nests. Both populations orchestrate a particular structural tissue organization through dense and aligned fiber deposition compared with T cell-permissive CAF. Yet they produce distinct matrix molecules, including collagen IV (MYH11+αSMA+ CAF) and collagen XI/XII (FAP+αSMA+ CAF). Hereby, we uncovered unique molecular programs of CAF driving T-cell marginalization, whose targeting should increase immunotherapy efficacy in patients bearing T cell-excluded tumors. SIGNIFICANCE: The cellular and molecular programs driving T-cell marginalization in solid tumors remain unclear. Here, we describe two CAF populations associated with T-cell exclusion in human lung tumors. We demonstrate the importance of pairing molecular and spatial analysis of the tumor microenvironment, a prerequisite to developing new strategies targeting T cell-excluding CAF. See related commentary by Sherman, p. 2501. This article is highlighted in the In This Issue feature, p. 2483.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Humanos , Fibroblastos Asociados al Cáncer/patología , Linfocitos T , Microambiente Tumoral , Inmunoterapia/métodos , Neoplasias Pulmonares/patología , Fibroblastos
8.
Nat Med ; 28(2): 345-352, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35027758

RESUMEN

Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR. We demonstrate that these HLA-independent T cell receptors (HIT receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based CARs, the most sensitive design to date, can provide. We demonstrate that the functional persistence of HIT T cells can be augmented by constitutive coexpression of CD80 and 4-1BBL. Finally, we validate the increased antigen sensitivity afforded by HIT receptors in xenograft mouse models of B cell leukemia and acute myeloid leukemia, targeting CD19 and CD70, respectively. Overall, HIT receptors are well suited for targeting cell surface antigens of low abundance.


Asunto(s)
Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Animales , Antígenos CD19 , Antígenos de Histocompatibilidad , Humanos , Inmunoterapia Adoptiva , Ratones , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34551315

RESUMEN

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Daño del ADN , Exodesoxirribonucleasas/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animales , Línea Celular , Senescencia Celular , Colágeno/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Invasividad Neoplásica , Membrana Nuclear/ultraestructura , Proteolisis , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nat Commun ; 12(1): 4389, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282141

RESUMEN

Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type.


Asunto(s)
Exosomas/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Comunicación Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Vesículas Extracelulares/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Proteómica
11.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32970988

RESUMEN

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animales , Colon/metabolismo , Células Epiteliales/metabolismo , Epitelio , Femenino , Homeostasis , Inmunidad Innata/inmunología , Mucosa Intestinal/microbiología , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Transducción de Señal
12.
J Exp Med ; 216(5): 1199-1213, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30936263

RESUMEN

Cellular innate immune sensors of DNA are essential for host defense against invading pathogens. However, the presence of self-DNA inside cells poses a risk of triggering unchecked immune responses. The mechanisms limiting induction of inflammation by self-DNA are poorly understood. BLM RecQ-like helicase is essential for genome integrity and is deficient in Bloom syndrome (BS), a rare genetic disease characterized by genome instability, accumulation of micronuclei, susceptibility to cancer, and immunodeficiency. Here, we show that BLM-deficient fibroblasts show constitutive up-regulation of inflammatory interferon-stimulated gene (ISG) expression, which is mediated by the cGAS-STING-IRF3 cytosolic DNA-sensing pathway. Increased DNA damage or down-regulation of the cytoplasmic exonuclease TREX1 enhances ISG expression in BLM-deficient fibroblasts. cGAS-containing cytoplasmic micronuclei are increased in BS cells. Finally, BS patients demonstrate elevated ISG expression in peripheral blood. These results reveal that BLM limits ISG induction, thus connecting DNA damage to cellular innate immune response, which may contribute to human pathogenesis.


Asunto(s)
Inmunidad Innata/inmunología , Nucleotidiltransferasas/metabolismo , RecQ Helicasas/inmunología , 2',5'-Oligoadenilato Sintetasa/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Síndrome de Bloom/patología , Niño , Citosol/metabolismo , Daño del ADN/inmunología , Exodesoxirribonucleasas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Factor 3 Regulador del Interferón/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/genética , RecQ Helicasas/genética , Transcriptoma , Transducción Genética , Proteínas Supresoras de Tumor/genética
13.
Cell Rep ; 26(9): 2377-2393.e13, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811988

RESUMEN

Cytosolic DNA activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS), an innate immune sensor pivotal in anti-microbial defense, senescence, auto-immunity, and cancer. cGAS is considered to be a sequence-independent DNA sensor with limited access to nuclear DNA because of compartmentalization. However, the nuclear envelope is a dynamic barrier, and cGAS is present in the nucleus. Here, we identify determinants of nuclear cGAS localization and activation. We show that nuclear-localized cGAS synthesizes cGAMP and induces innate immune activation of dendritic cells, although cGAMP levels are 200-fold lower than following transfection with exogenous DNA. Using cGAS ChIP-seq and a GFP-cGAS knockin mouse, we find nuclear cGAS enrichment on centromeric satellite DNA, confirmed by imaging, and to a lesser extent on LINE elements. The non-enzymatic N-terminal domain of cGAS determines nucleo-cytoplasmic localization, enrichment on centromeres, and activation of nuclear-localized cGAS. These results reveal a preferential functional association of nuclear cGAS with centromeres.


Asunto(s)
Centrómero/enzimología , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Adulto , Animales , Línea Celular , Núcleo Celular/enzimología , ADN , ADN Satélite , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleotidiltransferasas/química , Dominios Proteicos
14.
Cell ; 175(2): 488-501.e22, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270045

RESUMEN

Detection of viruses by innate immune sensors induces protective antiviral immunity. The viral DNA sensor cyclic GMP-AMP synthase (cGAS) is necessary for detection of HIV by human dendritic cells and macrophages. However, synthesis of HIV DNA during infection is not sufficient for immune activation. The capsid protein, which associates with viral DNA, has a pivotal role in enabling cGAS-mediated immune activation. We now find that NONO is an essential sensor of the HIV capsid in the nucleus. NONO protein directly binds capsid with higher affinity for weakly pathogenic HIV-2 than highly pathogenic HIV-1. Upon infection, NONO is essential for cGAS activation by HIV and cGAS association with HIV DNA in the nucleus. NONO recognizes a conserved region in HIV capsid with limited tolerance for escape mutations. Detection of nuclear viral capsid by NONO to promote DNA sensing by cGAS reveals an innate strategy to achieve distinction of viruses from self in the nucleus.


Asunto(s)
Proteínas de la Cápside/inmunología , Proteínas Asociadas a Matriz Nuclear/inmunología , Proteínas Asociadas a Matriz Nuclear/fisiología , Factores de Transcripción de Octámeros/inmunología , Factores de Transcripción de Octámeros/fisiología , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/fisiología , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/fisiología , Núcleo Celular/metabolismo , ADN Viral/genética , ADN Viral/inmunología , Proteínas de Unión al ADN , Células Dendríticas/inmunología , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/inmunología , VIH-2/genética , VIH-2/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/inmunología , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/fisiología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/inmunología
15.
PLoS One ; 11(12): e0167057, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27911948

RESUMEN

Targeting TLR3 through formulations of polyI:C is widely studied as an adjuvant in cancer immunotherapy. The efficacy of such targeting has been shown to increase in combination with anti-PD-L1 treatment. Nevertheless, the mechanistic details of the effect of polyI:C on DC maturation and the impact on T-DC interactions upon PD-L1 blockade is largely unknown. Here we found that although DC treatment with polyI:C induced a potent inflammatory response including the production of type I interferon, polyI:C treatment of DCs impaired activation of peptide specific CD8+ T cells mainly due to PD-L1. Interestingly, we found that PD-L1 trafficking to the cell surface is regulated in two waves in polyI:C-treated DCs. One induced upon overnight treatment and a second more rapid one, specific to polyI:C treatment, was induced upon CD40 signaling leading to a further increase in surface PD-L1 in DCs. The polyI:C-induced cell surface PD-L1 reduced the times of contact between DCs and T cells, potentially accounting for limited T cell activation. Our results reveal a novel CD40-dependent regulation of PD-L1 trafficking induced upon TLR3 signaling that dictates its inhibitory activity. These results provide a mechanistic framework to understand the efficacy of anti-PD-L1 cancer immunotherapy combined with TLR agonists.


Asunto(s)
Antígeno B7-H1/inmunología , Antígenos CD40/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Activación de Linfocitos , Transducción de Señal/inmunología , Receptor Toll-Like 3/inmunología , Animales , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Poli I-C/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/inmunología , Transducción de Señal/efectos de los fármacos
16.
Nat Cell Biol ; 18(1): 54-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26641717

RESUMEN

Integrins have key functions in cell adhesion and migration. How integrins are dynamically relocalized to the leading edge in highly polarized migratory cells has remained unexplored. Here, we demonstrate that ß1 integrin (known as PAT-3 in Caenorhabditis elegans), but not ß3, is transported from the plasma membrane to the trans-Golgi network, to be resecreted in a polarized manner. This retrograde trafficking is restricted to the non-ligand-bound conformation of ß1 integrin. Retrograde trafficking inhibition abrogates several ß1-integrin-specific functions such as cell adhesion in early embryonic development of mice, and persistent cell migration in the developing posterior gonad arm of C. elegans. Our results establish a paradigm according to which retrograde trafficking, and not endosomal recycling, is the key driver for ß1 integrin function in highly polarized cells. These data more generally suggest that the retrograde route is used to relocalize plasma membrane machinery from previous sites of function to the leading edge of migratory cells.


Asunto(s)
Movimiento Celular/fisiología , Endosomas/metabolismo , Integrina beta1/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Células HeLa , Humanos , Ratones , Transporte de Proteínas
17.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682983

RESUMEN

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Asunto(s)
Presentación de Antígeno/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Receptor Toll-Like 4/inmunología , Animales , Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Citotoxicidad Inmunológica/inmunología , Femenino , Citometría de Flujo , Lisosomas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fagosomas/inmunología , ARN Interferente Pequeño , Transfección , Proteínas de Unión al GTP rab/inmunología
18.
Nat Commun ; 6: 7526, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26109323

RESUMEN

The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos/metabolismo , Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Miosina Tipo II/metabolismo , Ovalbúmina/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Células de la Médula Ósea , Catepsinas/genética , Catepsinas/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Masculino , Ratones , Técnicas Analíticas Microfluídicas , Miosina Tipo II/genética
19.
J Biomed Opt ; 16(3): 036001, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21456865

RESUMEN

Our purpose is to test if Pluronic® fluorescent nanomicelles can be used for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium is compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles show, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 h after intravenous injection. Their two-photon imaging depth is similar in normal mouse brain, using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20-100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block copolymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection.


Asunto(s)
Vasos Sanguíneos/anatomía & histología , Colorantes Fluorescentes , Microscopía Confocal/métodos , Animales , Determinación del Volumen Sanguíneo , Encéfalo/irrigación sanguínea , Línea Celular Tumoral , Dextranos , Diagnóstico por Imagen , Humanos , Ratones , Ratones Desnudos , Micelas , Nanoestructuras , Neoplasias Experimentales/irrigación sanguínea , Fenómenos Ópticos , Fotones , Poloxámero , Rodaminas , Estirenos
20.
Photochem Photobiol Sci ; 10(7): 1216-25, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21499638

RESUMEN

The synthesis and photophysical properties of two lipophilic quadrupolar chromophores featuring anthracenyl (1) or dibromobenzene (2) were described. These two chromophores combined significant two-photon absorption cross-sections with high fluorescence quantum yield for 1 and improved singlet oxygen generation efficiency for 2, in organic solvents. The use of Pluronic nanoparticles allowed a simple and straightforward introduction of these lipophilic chromophores into biological cell media. Their internal distribution in various cell lines was studied using fluorescence microscopy and flow-cytometry following a successful staining that was achieved upon 2 h of incubation. Finally, multiphoton excitation microscopy and photodynamic therapy capability of the chromophores were demonstrated by cell exposure to a 820 nm fs laser and cell death upon one photon resonant irradiation at 436 ± 10 nm, respectively.


Asunto(s)
Alquinos/química , Compuestos de Anilina/química , Antracenos/química , Bromobencenos/química , Fármacos Fotosensibilizantes/química , Polímeros/química , Alquinos/farmacología , Alquinos/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Animales , Antracenos/farmacología , Antracenos/uso terapéutico , Apoptosis , Bromobencenos/farmacología , Bromobencenos/uso terapéutico , Línea Celular Tumoral , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Fluorescente , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Fotones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Poloxámero/química , Teoría Cuántica , Ratas , Oxígeno Singlete/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA