Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543151

RESUMEN

Human glutathione transferase A4-4 (hGSTA4-4) displays high catalytic efficiency towards 4-hydroxyalkenals and other cytotoxic and mutagenic products of radical reactions and lipid peroxidation. Its role as a target for the chemosensitization of cancer cells has not been investigated so far. In this study, the inhibitory potency of twelve selected natural products and ten monocarbonyl curcumin derivatives against hGSTA4-4 was studied. Among natural products, ellagic acid turned out to be the strongest inhibitor with an IC50 value of 0.44 ± 0.01 µM. Kinetic analysis using glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as variable substrates showed that ellagic acid behaved as a competitive inhibitor towards both GSH and CDNB, with Ki values of 0.39 ± 0.02 and 0.63 ± 0.03 µM, respectively. Among the curcumin derivatives studied, three proved to be the most potent inhibitors, in the order DM151 > DM101 > DM100, with IC50 values of 2.4 ± 0.1 µM, 12.7 ± 1.1 µΜ and 16.9 ± 0.4 µΜ, respectively. Further kinetic inhibition analysis of the most active derivative, DM151, demonstrated that this compound is a mixed inhibitor towards CDNB with inhibition constants of Ki = 4.1 ± 0.5 µM and Ki' = 0.536 ± 0.034 µM, while it is a competitive inhibitor towards GSH with a Ki = 0.98 ± 0.11 µM. Molecular docking studies were performed to interpret the differences in binding of ellagic acid and curcumin derivatives to hGSTA4-4. The in silico measured docking scores were consistent with the obtained experimental data. Hydrogen bonds appear to be the main contributors to the specific binding of monocarbonyl curcumin derivatives, while π-π stacking interactions play a key role in the enzyme-ellagic acid interaction. In vitro cytotoxicity assessment of the worst (DM148) and the best (DM151) inhibitors was performed against glioblastoma cell lines U-251 MG and U-87 MG. The results revealed that DM151 displays considerably higher cytotoxicity against both glioblastoma cell lines, while the glioblastoma cytotoxicity of DM148 was very limited. Furthermore, low and non-toxic doses of DM151 sensitized U-251 MG cells to the first-line glioblastoma chemotherapeutic temozolomide (TMZ), allowing us to propose for the first time that hGSTA4-4 inhibitors may be attractive therapeutic partners for TMZ to optimize its clinical effect in glioblastoma chemotherapy.

2.
Chempluschem ; 89(6): e202300743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38345604

RESUMEN

Conjugates of chlorins with ß-cyclodextrin connected either directly or via a flexible linker were prepared. In aqueous medium these amphiphilic conjugates were photostable, produced singlet oxygen at a rate similar to clinically used temoporfin and formed irregular nanoparticles via aggregation. Successful loading with the chemotherapeutic drug tamoxifen was evidenced in solution by the UV-Vis spectral changes and dynamic light scattering profiles. Incubation of MCF-7 cells with the conjugates revealed intense spotted intracellular fluorescence suggestive of accumulation in endosome/lysosome compartments, and no dark toxicity. Incubation with the tamoxifen-loaded conjugates revealed also practically no dark toxicity. Irradiation of cells incubated with empty conjugates at 640 nm and 4.18 J/cm2 light fluence caused >50 % cell viability reduction. Irradiation following incubation with tamoxifen-loaded conjugates resulted in even higher toxicity (74 %) indicating that the produced reactive oxygen species had triggered tamoxifen release in a photochemical internalization (PCI) mechanism. The chlorin-ß-cyclodextrin conjugates displayed less-lasting effects with time, compared to the corresponding porphyrin-ß-cyclodextrin conjugates, possibly due to lower tamoxifen loading of their aggregates and/or their less effective lodging in the cell compartments' membranes. The results suggest that further to favorable photophysical properties, other parameters are important for the in vitro effectiveness of the photodynamic systems.


Asunto(s)
Supervivencia Celular , Porfirinas , Tamoxifeno , beta-Ciclodextrinas , Humanos , beta-Ciclodextrinas/química , Porfirinas/química , Células MCF-7 , Tamoxifeno/química , Tamoxifeno/farmacología , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Luz , Portadores de Fármacos/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
3.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37375780

RESUMEN

The effect of carbon dots (CDs) on a model blayer membrane was studied as a means of comprehending their ability to affect cell membranes. Initially, the interaction of N-doped carbon dots with a biophysical liposomal cell membrane model was investigated by dynamic light scattering, z-potential, temperature-modulated differential scanning calorimetry, and membrane permeability. CDs with a slightly positive charge interacted with the surface of the negative-charged liposomes and evidence indicated that the association of CDs with the membrane affects the structural and thermodynamic properties of the bilayer; most importantly, it enhances the bilayer's permeability against doxorubicin, a well-known anticancer drug. The results, like those of similar studies that surveyed the interaction of proteins with lipid membranes, suggest that carbon dots are partially embedded in the bilayer. In vitro experiments employing breast cancer cell lines and human healthy dermal cells corroborated the findings, as it was shown that the presence of CDs in the culture medium selectively enhanced cell internalization of doxorubicin and, subsequently, increased its cytotoxicity, acting as a drug sensitizer.

4.
Carbohydr Polym ; 306: 120579, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746578

RESUMEN

Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of ß-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.


Asunto(s)
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Humanos , Porfirinas/farmacología , Antineoplásicos/farmacología , Gemcitabina , Nanopartículas/química , beta-Ciclodextrinas/química , Portadores de Fármacos/química
5.
J Inorg Biochem ; 232: 111832, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462130

RESUMEN

In this work the first crystallographically characterized complex of the bioactive flavonoid morin with the Zn(II) ion is presented along with its complete physico-chemical characterization. In view of the antioxidant activity of morin and its toxicity against respiratory tract cancers, the encapsulation of the complex in the hydrophilic bis(methylol)propionic acid hyperbranched dendritic scaffolds (bis-MPA HDSs) was effected. The produced nano-formulations were characterized with physico-chemical and electron microscopy techniques, and biologically evaluated for their antioxidant and anticancer activity against human A549 and H520 lung cancer cells, as well as healthy human MRC-5 lung fibroblasts. The obtained results demonstrate that encapsulation increases the solubility, and thus bioavailability, of the complex in physiological media and enhances anticancer action. They also highlight the importance of the non-toxic bis-MPA HDSs as nanocarriers of bioactive flavonoid metal complexes for anticancer therapeutic applications.


Asunto(s)
Complejos de Coordinación , Flavonoides , Antioxidantes/farmacología , Complejos de Coordinación/farmacología , Flavonoides/química , Flavonoides/farmacología , Humanos , Solubilidad , Zinc/química
6.
Antioxidants (Basel) ; 12(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36670925

RESUMEN

The isoenzyme of human glutathione transferase P1-1 (hGSTP1-1) is involved in multi-drug resistance (MDR) mechanisms in numerous cancer cell lines. In the present study, the inhibition potency of two curcuminoids and eleven monocarbonyl curcumin analogues against hGSTP1-1 was investigated. Demethoxycurcumin (Curcumin II) and three of the monocarbonyl curcumin analogues exhibited the highest inhibitory activity towards hGSTP1-1 with IC50 values ranging between 5.45 ± 1.08 and 37.72 ± 1.02 µM. Kinetic inhibition studies of the most potent inhibitors demonstrated that they function as non-competitive/mixed-type inhibitors. These compounds were also evaluated for their toxicity against the prostate cancer cells DU-145. Interestingly, the strongest hGSTP1-1 inhibitor, (DM96), exhibited the highest cytotoxicity with an IC50 of 8.60 ± 1.07 µΜ, while the IC50 values of the rest of the compounds ranged between 44.59-48.52 µΜ. Structural analysis employing molecular docking, molecular dynamics (MD) simulations, and binding-free-energy calculations was performed to study the four most potent curcumin analogues as hGSTP1-1 inhibitors. According to the obtained computational results, DM96 exhibited the lowest binding free energy, which is in agreement with the experimental data. All studied curcumin analogues were found to form hydrophobic interactions with the residue Gln52, as well as hydrogen bonds with the nearby residues Gln65 and Asn67. Additional hydrophobic interactions with the residues Phe9 and Val36 as well as π-π stacking interaction with Phe9 contributed to the superior inhibitory activity of DM96. The van der Waals component through shape complementarity was found to play the most important role in DM96-inhibitory activity. Overall, our results revealed that the monocarbonyl curcumin derivative DM96 acts as a strong hGSTP1-1 inhibitor, exerts high prostate cancer cell cytotoxicity, and may, therefore, be exploited for the suppression and chemosensitization of cancer cells. This study provides new insights into the development of safe and effective GST-targeted cancer chemosensitizers.

7.
Carbohydr Polym ; 275: 118666, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742406

RESUMEN

In the search for photosensitizers with chemical handles to facilitate their integration into complex drug delivery nanosystems, new, unsymmetrically substituted, water insoluble meso-tetraphenylporphyrin and meso-tetra(m-hydroxyphenyl)porphyrin derivatives bearing one carboxyalkyl side chain were synthesized. Permethyl-ß-cyclodextrin (pMßCD) was their ideal monomerizing host and highly efficient shuttle to transfer them into water. New assembly modes of the extremely stable (Kbinding > 1012 M-2) 2:1 complexes were identified. The complexes are photostable and do not disassemble in FBS-containing cell culture media for 24 h. Incubation of breast cancer MCF-7 cells with the complexes results in intense intracellular fluorescence, strongly enhanced in the endoplasmic reticulum (ER), high photokilling efficiency (~90%) and low dark toxicity. pMßCD stands out as a very capable molecular isolator of mono-carboxyalkyl-arylporphyrins that increases uptake and modulates their localization in the cells. The most efficient porphyrins are envisaged as suitable photosensitizers that can be linked to biocompatible drug carriers for photo- and chemo-therapy applications.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , beta-Ciclodextrinas/química , Transporte Biológico , Neoplasias de la Mama/patología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Células MCF-7 , Espectroscopía de Resonancia Magnética/métodos , Fármacos Fotosensibilizantes/química , Solubilidad , Espectrometría de Fluorescencia/métodos , Agua/química , beta-Ciclodextrinas/farmacología
8.
J Inorg Biochem ; 208: 111083, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32487364

RESUMEN

Curcumin and quercetin are two of the most prominent natural polyphenols with a diverse spectrum of beneficial properties, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activity. The complexation of these natural products with bioactive transition metal ions can lead to the generation of novel metallodrugs with enhanced biochemical and pharmacological activities. Within this framework, the synthesis and detailed structural and physicochemical characterization of two novel complex assemblies of Cu(II) with curcumin and quercetin and the ancillary aromatic chelator 2,2'-bipyridine is presented. The two complexes represent the only crystallographically characterized structures with Cu(II) as the central metal ion and curcumin or quercetin as the ligands. The new complexes were biologically evaluated in vitro for their antioxidant potential, both exhibiting strong scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, and their plasmid DNA binding/cleavage properties. Both complexes appear to be non-toxic in the eukaryotic experimental model Saccharomyces cerevisiae and merit further investigation of their pharmacological profile.


Asunto(s)
Complejos de Coordinación , Cobre , Curcumina , ADN/química , Plásmidos/química , Quercetina , Saccharomyces cerevisiae/crecimiento & desarrollo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , Curcumina/química , Curcumina/farmacología , Quercetina/química , Quercetina/farmacología
9.
Pharmaceutics ; 12(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098286

RESUMEN

Actinium-225 (225Ac) is receiving increased attention for its application in targeted radionuclide therapy, due to the short range of its emitted alpha particles in conjunction with their high linear energy transfer, which lead to the eradication of tumor cells while sparing neighboring healthy tissue. The objective of our study was the evaluation of a gold nanoparticle radiolabeled with 225Ac as an injectable radiopharmaceutical form of brachytherapy for local radiation treatment of cancer. Au@TADOTAGA was radiolabeled with 225Ac at pH 5.6 (30 min at 70 °C), and in vitro stability was evaluated. In vitro cytotoxicity was assessed in U-87 MG cancer cells, and in vivo biodistribution was performed by intravenous and intratumoral administration of [225Ac]225Ac-Au@TADOTAGA in U-87 MG tumor-bearing mice. A preliminary study to assess therapeutic efficacy of the intratumorally-injected radio-nanomedicine was performed over a period of 22 days, while the necrotic effect on tumors was evaluated by a histopathology study. We have shown that [225Ac]225Ac-Au@TADOTAGA resulted in the retardation of tumor growth after its intratumoral injection in U87MG tumor-bearing mice, even though very low activities were injected per mouse. This gold nanoparticle radiopharmaceutical could be applied as an unconventional brachytherapy in injectable form for local radiation treatment of cancer.

10.
Dalton Trans ; 49(8): 2734-2746, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32064490

RESUMEN

Chemotherapeutic metal-based compounds are effective anticancer agents; however, their cytotoxic profile and significant side effects limit their wide application. Natural products, especially flavonoids, are a prominent alternative source of anticancer agents that can be used as ligands for the generation of new bioactive complexes with metal ions of known biochemical and pharmacological activities. Herein, we present the synthesis and detailed structural and physicochemical characterizations of three novel complex assemblies of Ga(iii) with the flavonoid chrysin and the ancillary aromatic chelators 1,10-phenanthroline, 2,2'-bipyridine and imidazole. The complexes constitute the only crystallographically characterized structures having a metal core from the boron group elements and a flavonoid as the ligand. The in vitro biological evaluation of the three complexes in a series of cancer cell lines of different origin established their cytotoxicity and ROS generating potential. In particular, the Ga(iii)-chrysin-imidazole complex displayed the highest anticancer efficacy against all cancer cell lines with IC50 values in the low micromolar range (<1.18 µM), a result worth further investigation.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/química , Galio/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Proliferación Celular , Humanos , Estructura Molecular , Neoplasias/patología , Relación Estructura-Actividad , Células Tumorales Cultivadas
11.
J Inorg Biochem ; 199: 110778, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31442839

RESUMEN

In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.


Asunto(s)
Antineoplásicos/química , Curcumina/química , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Vanadio/química , Antineoplásicos/administración & dosificación , ADN/química , Estabilidad de Medicamentos , Desnaturalización de Ácido Nucleico , Solubilidad
12.
Nat Biomed Eng ; 1(10): 838-852, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31015593

RESUMEN

Protein misfolding and aggregation are common pathological features of several human diseases, including Alzheimer's disease and type 2 diabetes. Here, we report an integrated and generalizable bacterial system for the facile discovery of chemical rescuers of disease-associated protein misfolding. In this system, large combinatorial libraries of macrocyclic molecules are biosynthesized in Escherichia coli cells and simultaneously screened for their ability to rescue pathogenic protein misfolding and aggregation using a flow cytometric assay. We demonstrate the effectiveness of this approach by identifying drug-like, head-to-tail cyclic peptides that modulate the aggregation of the Alzheimer's disease-associated amyloid ß peptide. Biochemical, biophysical and biological assays using isolated amyloid ß peptide, primary neurons and various established Alzheimer's disease nematode models showed that the selected macrocycles potently inhibit the formation of neurotoxic amyloid ß peptide aggregates. We also applied the system to the identification of misfolding rescuers of mutant Cu/Zn superoxide dismutase-an enzyme linked with inherited forms of amyotrophic lateral sclerosis. Overall, the system enables the identification of molecules with therapeutic potential for rescuing the misfolding of disease-associated polypeptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA