Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Res Int ; 170: 112979, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316016

RESUMEN

This article studies the release of phenolic compounds during cocoa heating under vacuum, N2, and air atmospheres, and proposes fast heating (60 °C • s-1) as a methodology that allows the release of polyphenols from fermented cocoa powder. We aim to demonstrate that gas phase transport is not the only mechanism to extract compounds of interest and that convective-type mechanisms can facilitate the process by reducing their degradation. The oxidation and transport phenomena were evaluated both in the extracted fluid and in the solid sample during the heating process. Polyphenols transport phenomena were assessed based on the fluid (chemical condensate compounds) that was collected cold with an organic solvent (methanol) in a hot plate reactor. Out of all the polyphenolic compounds present in cocoa powder, we assessed specifically the release of catechin and epicatechin. We found that high heating rates combined with vacuum or N2 favor the ejection of liquids; then, it is possible to extract compounds such as catechin-which is dissolved/entrained and transported in the ejected liquids-and avoid degradation phenomena.


Asunto(s)
Catequina , Chocolate , Calefacción , Fenoles , Polifenoles
2.
Respir Physiol Neurobiol ; 294: 103767, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34329768

RESUMEN

A computational model of the transport of gases involved in spontaneous breathing, from the trachea inlet to the alveoli was developed for healthy patients. Convective and diffusive transport mechanisms were considered simultaneously, using a diffusion coefficient (D) that has considered the four main species of gases present in the exchange carried out by the human lung, nitrogen (N2), oxygen (O2), carbon dioxide (CO2) and water vapor (H2O). A Matlab® script was programmed to simulate the trachea-alveolus gas exchange model under three respiratory frequencies: 12, 24 and 40 breaths per minute (BPM), each with three diaphragmatic movements of 2 cm, 4 cm, and 6 cm. During the simulations, the CO2 inlet concentrations in the alveoli and the O2 concentration at the inlet of the trachea were kept constant. A simplified but stable model of mass transport between the trachea and alveoli was obtained, allowing the concentrations to be determined dynamically at the selected test points in the airway.


Asunto(s)
Modelos Teóricos , Alveolos Pulmonares/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Respiración , Tráquea/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA