Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
J Agric Food Chem ; 72(30): 16988-16997, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024566

RESUMEN

Reducing salt intake without affecting the saltiness perception remains a great challenge for the food industry. Herein, the demulsification of water droplets and air bubbles was controlled to modulate the release of sodium from oleogel-stabilized water-in-oil emulsions (OGEs) stabilized by monoglyceride crystals. The effect of monoglycerides with carbon chain length (glycerol monolaurate-GML, glyceryl monostearate-GMS, and glycerol monopalmitate-GMP) and homogenization methods (hand-shaking or high-speed blender) on sodium release and saltiness was investigated by in vitro and in vivo oral processing tests. Milky-white stable emulsions were formed with both water droplets and air bubbles dispersing in the oil phase, regardless of the selected homogenization methods. Air bubbles were more unstable than water droplets during oral digestion. GML OGEs with more and larger air bubbles and the lowest hardness exhibited the highest sodium release rate and the strongest saltiness, independent of homogenization methods. The balance between air bubbles and water droplets in the GMS and GMP OGEs caused slower sodium release and lower saltiness. Overall, the presence of air bubbles in NaCl-loaded W/O oleogel-based emulsions was shown to have important implications for tailoring their sodium release and saltiness.


Asunto(s)
Emulsiones , Compuestos Orgánicos , Agua , Emulsiones/química , Compuestos Orgánicos/química , Agua/química , Humanos , Cloruro de Sodio/química , Monoglicéridos/química , Gusto , Aceites/química , Aire , Masculino
2.
Food Chem ; 460(Pt 2): 140633, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39068807

RESUMEN

Hickory is an abundant source of phenolic compounds that exhibit a diverse range of bioactivities. In this study, phenolic compounds were extracted and purified from hickory green husk (HG), hickory nutshell (HN), and hickory seed coat (HS) using solid-phase extraction and ultrasonication (SPE-US). The effects of the SPE-US treatment on the structure and properties of the phenolic compounds were then investigated, including their composition, antioxidant activity, and antimicrobial activity. The dominant phenolic substances in the different extracts after SPE-US treatment were: ellagic acid and trans ferulic acid (HS); ellagic acid and sinapic acid (HN); and rutin (HG). The HS-SPE-US1 extract exhibited the highest total polyphenol content (416 ± 11 mg GAE/g DW), total flavonoid content (47.51 ± 0.68 mg RE/g DW), Fe3+ reduction ability (74.2 ± 1.0 mmol Fe2+/g DW), radical (DPPH and ABTS) scavenging ability, and antimicrobial activity against Staphylococcus aureus.

3.
Food Chem ; 456: 139878, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38852455

RESUMEN

This study aimed to upcycle a byproduct of the edible oil industry, cold-pressed nettle seed meal (CPNSM), into a plant-based emulsifier, thereby increasing the sustainability of the food system. The protein content of the nettle seed protein (NSP) powder was 48.3% with glutamic acid (16.6%), asparagine (10.7%), and arginine (9.7%) being the major amino acids. NSPs had a denaturation temperature of 66.6 °C and an isoelectric point of pH 4.3. They could be used as emulsifiers to form highly viscous coarse corn oil-in-water emulsions (10% oil, 4% NSP). Nevertheless, 10-fold diluted emulsions exhibited rapid creaming under different pH (2-9), salt (0-500 mM NaCl) and temperature (>40 °C) conditions, but they were relatively stable to aggregation. Our findings suggest that NSPs could be used as emulsifiers in highly viscous or gelled foods, like dressings, sauces, egg, cheese, or meat analogs.


Asunto(s)
Emulsionantes , Proteínas de Plantas , Semillas , Emulsionantes/química , Semillas/química , Proteínas de Plantas/química , Emulsiones/química , Aceites de Plantas/química , Residuos Industriales/análisis , Concentración de Iones de Hidrógeno
4.
Food Funct ; 15(14): 7478-7490, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915263

RESUMEN

People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.


Asunto(s)
Avena , Digestión , Tracto Gastrointestinal , Polifenoles , , Polifenoles/metabolismo , Polifenoles/farmacocinética , Avena/química , Avena/metabolismo , Tracto Gastrointestinal/metabolismo , Té/química , Humanos , Disponibilidad Biológica , Animales , Nutrientes/metabolismo , Nutrientes/análisis , Leche/química , Leche/metabolismo , Modelos Biológicos , Espectrometría de Masas en Tándem
5.
Food Chem ; 455: 139743, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823135

RESUMEN

Plant proteins are increasingly being used in the food industry due to their sustainability. They can be isolated from food industry waste and converted into value-added ingredients, promoting a more circular economy. In this study, ultrasound-assisted alkaline extraction (UAAE) was optimized to maximize the extraction yield and purity of protein ingredients from grapeseeds. Grapeseed protein was extracted using UAAE under different pH (9-11), temperature (20-50 °C), sonication time (15-45 min), and solid/solvent ratio (10-20 mL/g) conditions. The structural and functional attributes of grapeseed protein and its major fractions (albumins and glutelins) were investigated and compared. The albumin fractions had higher solubilities, emulsifying properties, and in vitro digestibilities but lower fluid binding capacities and thermal stability than the UAAE and glutelin fraction. These findings have the potential to boost our understanding of the structural and functional characteristics of grapeseed proteins, thereby increasing their potential applications in the food and other industries.


Asunto(s)
Fraccionamiento Químico , Proteínas de Plantas , Vino , Vino/análisis , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Fraccionamiento Químico/métodos , Residuos Industriales/análisis , Vitis/química , Ultrasonido
6.
Food Funct ; 15(11): 5797-5812, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747250

RESUMEN

Ulcerative colitis (UC) is a common chronic inflammatory disease that causes serious harm to human health. Probiotics have the effect of improving UC. This study evaluated the preventative potential of water-in-oil-in-water (W1/O/W2) emulsions containing both probiotics and fish oil on UC and associated anxiety-like behavior using a mice model. UC model was established in mice by administering dextran sulfate sodium salt (DSS). Free probiotics, probiotic-loaded emulsions, or fish oil and probiotic co-loaded emulsions were then orally administered to the mice. Various bioassays, histological studies, 16s rDNA gene sequencing, and behavioral experiments were conducted to assess changes in the intestinal environment, microbiota, and anxiety-like behavior of the mice. The fish oil and probiotic co-loaded emulsions significantly reduced the inflammatory response by enhancing tight junction protein secretion (ZO-1, Occludin, and Claudin-1), inhibiting pro-inflammatory factors (TNF-α, and IL-1ß), and promoting short-chain fatty acids (SCFAs) production. These emulsions also modified the gut microbiota by promoting beneficial bacteria and suppressing pathogenic bacteria, thereby restoring a balanced gut microbiota. Notably, the emulsions containing both probiotics and fish oil also ameliorated anxiety-like behavior in the mice. The co-delivery of probiotics and fish oil using W1/O/W2 emulsions has shown significant promise in relieving UC and its associated anxiety-like behavior. These findings provide novel insights into the development of advanced therapeutic strategies for treating UC.


Asunto(s)
Colitis Ulcerosa , Emulsiones , Aceites de Pescado , Microbioma Gastrointestinal , Probióticos , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Emulsiones/química , Probióticos/farmacología , Aceites de Pescado/farmacología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Agua , Sulfato de Dextran/efectos adversos , Humanos
7.
Crit Rev Food Sci Nutr ; : 1-15, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720615

RESUMEN

In recent years, crosslinking technology has been found and widely used in food, textile, pharmaceutical, bioengineering and other fields. Crosslinking is a reaction in which two or more molecules bond to each other to form a stable three-dimensional network structure to improve the strength, heat resistance and other properties of substances. The researchers found that the cross-linking technology has a significant effect on improving the thermal stability of the colloidal delivery system. In this paper, crosslinking techniques that can be used to improve the thermal stability of colloidal delivery systems are reviewed, including enzyme-, ion-, chemical-, and combined cross-linking. Initially, the underlying mechanisms of these crosslinking technologies is reviewed. Then, the impacts of crosslinking on the heat-stability of colloidal delivery systems are discussed. Finally, the application of crosslinked delivery systems in improving the thermal stability of probiotics, polyphenols, pigments, and nutrients in foods and food packaging materials is introduced. The ability of proteins and polysaccharides to form heat-stable colloidal delivery systems can be improved by crosslinking. Nevertheless, more research is required to establish the impact of different crosslinking on the thermal stability of a broader range of different delivery systems, as well as to ensure their safety and efficacy.

8.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38590257

RESUMEN

Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.

9.
Food Res Int ; 185: 114277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658069

RESUMEN

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Asunto(s)
Emulsiones , Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Mentha piperita , Aceites de Plantas , Mentha piperita/química , Emulsiones/química , Humanos , Aceites de Plantas/química , Aromatizantes/química , Gelatina/química , Reactivos de Enlaces Cruzados/química , Gusto , Hidrogeles/química , Nariz Electrónica , Masculino , Femenino , Adulto
10.
J Sci Food Agric ; 104(11): 6483-6493, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38507329

RESUMEN

BACKGROUND: Plant proteins are being increasingly utilized as functional ingredients in foods because of their potential health, sustainability, and environmental benefits. However, their functionality is often worse than the synthetic or animal-derived ingredients they are meant to replace. The functional performance of plant proteins can be improved by conjugating them with polyphenols. In this study, the formation and stability of oil-in-water emulsions prepared using faba bean protein-grape leaf polyphenol (FP-GLP) conjugates as emulsifiers. Initially, FP-GLP conjugates were formed using an ultrasound-assisted alkali treatment. Then, corn oil-in-water emulsions were prepared using high-intensity sonication (60% amplitude, 10 min) and the impacts of conjugate concentration, pH, ionic strength, freezing-thawing, and heating on their physicochemical properties and stability were determined. RESULTS: Microscopy and light scattering analysis showed that oil-in-water emulsions containing small oil droplets could be formed at conjugate concentrations of 2% and higher. The addition of salt reduced the electrostatic repulsion between the droplets, which increased their susceptibility to aggregation. Indeed, appreciable droplet aggregation was observed at ≥ 50 mmol/L sodium chloride. The freeze-thaw stability of emulsions prepared with protein-polyphenol conjugates was better than those prepared using the proteins alone. In addition, the emulsions stabilized by the conjugates had a higher viscosity than those prepared by proteins alone. CONCLUSION: This study showed that FP-GLP conjugates are effective plant-based emulsifiers for forming and stabilizing oil-in-water emulsions. Indeed, emulsions formed using these conjugates showed improved resistance to pH changes, heating, freezing, and salt addition. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Emulsiones , Congelación , Calor , Hojas de la Planta , Proteínas de Plantas , Polifenoles , Vicia faba , Emulsiones/química , Concentración de Iones de Hidrógeno , Polifenoles/química , Proteínas de Plantas/química , Hojas de la Planta/química , Vicia faba/química , Agua/química , Cloruro de Sodio/química , Emulsionantes/química , Extractos Vegetales/química
11.
Int J Biol Macromol ; 264(Pt 2): 130559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431016

RESUMEN

The effects of structural changes on surface oil absorption characteristics of wheat starch, pea starch and potato starch during frying under different water content (20%, 30%, 40%, 50%) were studied. Fried potato starch with a 40% water content exhibited the highest surface oil content. When the initial moisture content reached 30%, the scattering intensity of the crystal layer structure decreased for wheat and pea starches, while the scattering peak for potato starch completely disappeared. At 40% moisture content, the amorphous phase ratio values for fried potato, wheat and pea starches were 13.50%, 11.78% and 11.24%, respectively, and the nitrogen adsorption capacity of fried starch decreased in turn. These findings that the structure of potato starch was more susceptible to degradation compared to pea starch and wheat starch, resulting in higher surface oil absorbed by potato starch during frying process.


Asunto(s)
Pisum sativum , Solanum tuberosum , Solanum tuberosum/química , Triticum/metabolismo , Almidón/química , Agua/química
12.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520117

RESUMEN

(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.

13.
J Agric Food Chem ; 72(10): 5237-5246, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427027

RESUMEN

In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 µg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.


Asunto(s)
Selenio , Selenio/análisis , Antioxidantes , Yema de Huevo/química , Péptidos/química
14.
Adv Colloid Interface Sci ; 325: 103117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394718

RESUMEN

The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.


Asunto(s)
Antioxidantes , Eliminación de Residuos , Humanos , Antioxidantes/farmacología , Micelas , Alimentos , Peroxidación de Lípido , Aceites/química , Coloides , Oxidación-Reducción , Tensoactivos , Emulsiones
15.
Food Res Int ; 178: 113965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309880

RESUMEN

Cellular agriculture products, like myoglobin, are increasingly used by the food industry to provide desirable sensory properties to plant-based meat substitutes. This study elucidated the physicochemical properties and redox stability of myoglobin from both natural (equine) and cellular agriculture (bovine, sperm whale, and leopard) sources. The electrical characteristics and water-solubility of the different myoglobin samples were measured from pH 2.5 to 8.5. The isoelectric point of the myoglobin samples depended on the species, being pH 5.5 for equine, pH 4.5 for leopard and bovine, and pH 6.5 for sperm whale. All myoglobin samples had a solubility greater than 80% across the entire pH range studied. All myoglobin solutions appeared red and had two peaks in their UV-visible absorbance spectra after one day, which is consistent with oxymyoglobin formation. Equine myoglobin at pH 8 was selected to study its redox and color stability over time, where the oxymyoglobin oxidative status closely paralleled with the redness of the solutions. The effects of antioxidants (ascorbic acid, caffeic acid, catechin, gallic acid, quercetin, taxifolin, Trolox, and 4-methylcatechol) on the redox and color stability (redness) of the equine myoglobin (pH 8.0) was also studied. Antioxidants with low reduction potential values (ascorbic acid and quercetin) were particularly effective at enhancing the color stability of oxymyoglobin. The computational modeling study showed that amino acids on the myoglobin interacted with antioxidants through hydrogen bonds. The insights obtained may have important implications for the use of cellular agriculture to produce myoglobin for food applications.


Asunto(s)
Antioxidantes , Mioglobina , Animales , Bovinos , Caballos , Antioxidantes/farmacología , Antioxidantes/química , Quercetina , Cachalote/metabolismo , Ácido Ascórbico , Carne/análisis
16.
Food Chem ; 442: 138490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38245989

RESUMEN

In this study, the effects of thermal treatments on the structural, rheological, water mobility, antioxidant, and astringency properties of proanthocyanidin (PA)-pectin binary complexes were investigated. Thermal treatments (25, 63, or 85 °C) significantly decreased the particle size but increased the molecular weight of PA-pectin complexes, which indicated that heating altered the intermolecular and intramolecular interactions between PA and pectin. The thermal treatments reduced the apparent viscosity of both pectin and PA-pectin complexes, but the presence of proanthocyanidins (PAs) increased the apparent viscosity and water mobility of the PA-pectin complexes. Antioxidant activity analysis showed that the presence of pectin slightly reduced the antioxidant activity of the PAs, but there were no significant changes in the total phenolic content and antioxidant activity after thermal treatment. Finally, we found that pectin reduced the astringency of the PAs by forming PA-pectin complexes. Moreover, the thermal treatments also significantly reduced the astringency of the PA-pectin complexes.


Asunto(s)
Pectinas , Proantocianidinas , Pectinas/química , Antioxidantes/química , Astringentes , Viscosidad , Agua , Reología
17.
Int J Biol Macromol ; 258(Pt 1): 128340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000575

RESUMEN

Interactions between plant polyphenols and food allergens may be a new way to alleviate food allergies. The non-covalent interactions between the major allergen from peanut (Ara h 2) with procyanidin dimer (PA2) were therefore characterized using spectroscopic, thermodynamic, and molecular simulation analyses. The main interaction between the Ara h 2 and PA2 was hydrogen bonding. PA2 statically quenched the intrinsic fluorescence intensity and altered the conformation of the Ara h 2, leading to a more disordered polypeptide structure with a lower surface hydrophobicity. In addition, the in vitro allergenicity of the Ara h 2-PA2 complex was investigated using enzyme-linked immunosorbent assay (ELISA) kits. The immunoglobulin E (IgE) binding capacity of Ara h 2, as well as the release of allergenic cytokines, decreased after interacting with PA2. When the ratio of Ara h 2-to-PA2 was 1:50, the IgE binding capacity was reduced by around 43 %. This study provides valuable insights into the non-covalent interactions between Ara h 2 and PA2, as well as the potential mechanism of action of the anti-allergic reaction caused by binding of the polyphenols to the allergens.


Asunto(s)
Hipersensibilidad al Cacahuete , Proantocianidinas , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proantocianidinas/metabolismo , Glicoproteínas/química , Inmunoglobulina E/metabolismo , Polifenoles/metabolismo , Proteínas de Plantas/química
18.
Foods ; 12(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38137189

RESUMEN

Curcumin exhibits antioxidant and antitumor properties, but its poor chemical stability limits its application. Insoluble peptide precipitates formed by proteolysis of rice glutelin are usually discarded, resulting in resource waste. The coupled treatment of heat-assisted pH shifting and compounded chitosan (CS) was used to fabricate rice peptide aggregate-chitosan complexes (RPA-CS). The structure, interfacial behavior, emulsion properties, and digestibility of curcumin-loaded RPA-CS Pickering emulsions were investigated. Increasing the CS concentration led to lower interfacial tension but larger particle size, and the three-phase contact angle of the RPA-CS complexes approached 90°. Quartz crystal microbalance with dissipation (QCM-D) indicated that RPA-CS complexes with 6 g·kg-1 of CS (RPA-CS6) had the highest K1 (0.592 × 106 Hz-1) and K4 (0.487 × 106 Hz-1), suggesting that the softest interfacial layers were formed. The solid-liquid balance of RPA-RPA-CS emulsions was lower than 0.5, declaring that they had more elastic behavior than that of RPA emulsions. RPA-RPA-CS4-and RPA-CS6 emulsions had better storage stability, lower FFA release (79.8% and 76.3%, respectively), and higher curcumin bioaccessibility (65.2% and 68.2%, respectively) than RPA emulsions. This study showed that a low-value insoluble rice peptide precipitate could be used as a valuable emulsifier in foods, which may increase the economics and sustainability of the food supply.

19.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933826

RESUMEN

The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.

20.
Food Funct ; 14(20): 9364-9376, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37789722

RESUMEN

Different fruit and vegetable juices were first used to encapsulate curcumin to improve its solubility, stability, and bioaccessibility, which is expected to enable designing of polyphenol-enriched beverages and impact human health and well-being. Briefly, fruit and vegetable-derived extracellular vesicles usually serve as transport and communication tools between different cells, which means they also may be utilized as delivery carriers for other bioactive agents. Curcumin, as a model polyphenol with many physiological activities, typically has low water-solubility, stability, and bioaccessibility. Therefore, extracellular vesicles were applied to load curcumin to overcome these challenges and to facilitate its incorporation into fruit and vegetable juices. Three kinds of curcumin-loaded fruit and vegetable juices, including curcumin-loaded grape (Cur-G), tomato (Cur-T), and orange (Cur-O) juices, exhibited higher encapsulation efficiency (>80%) than others. The patterns of XRD and FTIR confirmed that curcumin moved into extracellular vesicles in the amorphous form and that the hydrogen bonding force was found between them. Three kinds of fruit and vegetable juices can significantly enhance the solubility, stability and bioavailability of curcumin, but the degrees of improvement are different. For instance, Cur-O exhibited the highest encapsulation efficiency, chemical stability, and effective bioaccessibility than Cur-G and Cur-T. In summary, this study shows that natural fruit and vegetable juices can effectively improve the solubility, stability and bioaccessibility of active polyphenols, which is expected to enable successful designing of nutrient-enriched beverages with a simple method according to various needs of people and be directly applied to food processing and home production.


Asunto(s)
Citrus sinensis , Curcumina , Nanopartículas , Solanum lycopersicum , Vitis , Humanos , Jugos de Frutas y Vegetales , Solubilidad , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA