Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Org Biomol Chem ; 19(16): 3665-3677, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908574

RESUMEN

In this work we report the synthesis of mono lipidated peptides containing a 3-mercaptopropionate linker in the N-terminus by means of a photoinitiated thiol-ene reaction (S-lipidation). We evaluate the self-assembling and hydrogelation properties of a library of mono S-lipidated peptides containing lipid chains of various lengths and demonstrate that hydrogelation was driven by a balance between the lipid chain's hydrophobicity and the peptide's facial hydrophobicity. We further postulate that a simple calculation using estimated values of log D could be used as a predictor of hydrogelation when designing similar systems. A mono S-lipidated peptide containing a short lipid chain that formed hydrogels was fully characterized and a mechanism for the peptide hydrogelation developed. Finally, we demonstrate that the presence of the thioether group in the mono S-lipidated peptide hydrogels, which is a feature lacking in conventional N-acyl lipidated systems, enables the controlled disassembly of the gel via oxidation to the sulfoxide by reactive oxygen species in accordance with a hydrophobicity-modulated strategy. Thus, we conclude that mono S-lipidated peptide hydrogels constitute a novel and simple tool for the development of tissue engineering and targeted drug delivery applications of diseases with overexpression of reactive oxygen species (e.g. degenerative and metabolic diseases, and cancers).


Asunto(s)
Hidrogeles
2.
Soft Matter ; 16(28): 6563-6571, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32588868

RESUMEN

Increased water solubility and long-range intermolecular ordering have been introduced into the fluorescent organic molecule thiophene-diketopyrrolopyrrole (TDPP) via its conjugation to the octapeptide HEFISTAH, which is derived from the protein-protein ß-interface of the homo-tetramer protein diaminopimelate decarboxylase. The octapeptide, and its TDPP mono- and cross-linked conjugates were synthesised using 9-fluorenylmethoxycarbonyl (Fmoc) based solid-phase peptide synthesis (SPPS). Unlike the unmodified peptide, the resulting mono-linked and cross-linked peptides showed a fibrous morphology and formed hydrogels at 4 wt% in water at neutral pH, but failed to assemble at pH 2 and pH 9. Further peptide characterization showed that the TDPP organic core enhances peptide self-assembly and that both peptides assembled into fibers with a parallel ß-sheet structure. Furthermore, UV-vis spectroscopic analysis suggests that the TDPP molecules form H-type aggregates where the chromophores are likely to be co-facially packed, but rotationally and/or laterally offset from one another. This intermolecular coupling indicates that π-π stacking interactions are highly likely - a favourable sign for charge transport. The enhanced aqueous solubility and self-assembling properties of the TDPP-peptide conjugates allowed the successful preparation of thin films. Atomic force microscopy, X-ray diffraction and UV-vis spectroscopic analysis of these thin films revealed that the hybrid materials retained a fibrous morphology, ß-sheet structures and strong intermolecular coupling between neighbouring TDPP molecules. These results open an exciting avenue for bio-organic materials development, through structural and electronic tuning of the TDPP core.


Asunto(s)
Péptidos , Pirroles , Hidrogeles , Concentración de Iones de Hidrógeno , Cetonas
3.
Bioconjug Chem ; 30(4): 1067-1076, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30821961

RESUMEN

Upon contact with biological fluids, the surface of nanoparticles is surrounded by many types of proteins, forming a so-called "protein corona". The physicochemical properties of the nanoparticle/corona complex depend predominantly on the nature of the protein corona. An understanding of the structure of the corona and the resulting complex provides insight into the structure-activity relationship. Here, we structurally evaluate the soft and hard components of the protein corona, formed from polystyrene (PS) nanoplastics and human serum albumin (HSA). Using circular dichroism spectroscopy to elucidate the structure of HSA within the complex, we establish the effect of nanoparticle size and pH on the nature of the protein corona formed- whether hard or soft. Despite the weak interaction between PS and the HSA corona, small angle neutron scattering revealed the formation of a complex structure that enhanced the intermolecular interactions between HSA proteins, PS particles, and the HS/PSA complexes. Fractal formation occurred under conditions where the interaction between PS and HSA was strong, and increasing HSA concentrations suppressed the degree of aggregation. The size of the nanoparticles directly influenced the nature of the protein corona, with larger particles favoring the formation of a soft corona, due to the decreased PS-HSA attraction.


Asunto(s)
Nanoestructuras/química , Plásticos/química , Poliestirenos/química , Corona de Proteínas/química , Albúmina Sérica Humana/química , Humanos , Concentración de Iones de Hidrógeno , Neutrones , Tamaño de la Partícula , Dispersión de Radiación , Relación Estructura-Actividad
4.
Acta Crystallogr D Struct Biol ; 72(Pt 12): 1254-1266, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27917826

RESUMEN

Radiation damage is a major limitation to synchrotron small-angle X-ray scattering analysis of biomacromolecules. Flowing the sample during exposure helps to reduce the problem, but its effectiveness in the laminar-flow regime is limited by slow flow velocity at the walls of sample cells. To overcome this limitation, the coflow method was developed, where the sample flows through the centre of its cell surrounded by a flow of matched buffer. The method permits an order-of-magnitude increase of X-ray incident flux before sample damage, improves measurement statistics and maintains low sample concentration limits. The method also efficiently handles sample volumes of a few microlitres, can increase sample throughput, is intrinsically resistant to capillary fouling by sample and is suited to static samples and size-exclusion chromatography applications. The method unlocks further potential of third-generation synchrotron beamlines to facilitate new and challenging applications in solution scattering.


Asunto(s)
Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Diseño de Equipo , Dosis de Radiación , Tamaño de la Muestra , Soluciones/química , Sincrotrones/instrumentación , Difracción de Rayos X/instrumentación , Rayos X
5.
Biochim Biophys Acta ; 1824(10): 1118-28, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22771296

RESUMEN

Venturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues with eight imperfect tandem repeats of ~60 amino acids. The Cin1 sequence has no homology to known proteins and appears to be genus-specific; however, Cin1 repeats and other repeat domains may be structurally similar. An NMR-derived structure of the first two repeat domains of Cin1 (Cin1-D1D2) and a low-resolution model of the full-length protein (Cin1-FL) using SAXS data were determined. The structure of Cin1-D1D2 reveals that each domain comprises a core helix-loop-helix (HLH) motif as part of a three-helix bundle, and is stabilized by two intra-domain disulfide bonds. Cin1-D1D2 adopts a unique protein fold as DALI and PDBeFOLD analysis identified no structural homology. A (15)N backbone NMR dynamic analysis of Cin1-D1D2 showed that a short stretch of the inter-domain linker has large amplitude motions that give rise to reciprocal domain-domain mobility. This observation was supported by SAXS data modeling, where the scattering length density envelope remains thick at the domain-domain boundary, indicative of inter-domain dynamics. Cin1-FL SAXS data models a loosely-packed arrangement of domains, rather than the canonical parallel packing of adjacent HLH repeats observed in α-solenoid repeat proteins. Together, these data suggest that the repeat domains of Cin1 display a "beads-on-a-string" organization with inherent inter-domain flexibility that is likely to facilitate interactions with target ligands.


Asunto(s)
Proteínas Fúngicas/química , Secuencia de Aminoácidos , Secuencia de Bases , Biología Computacional , Cartilla de ADN , Proteínas Fúngicas/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Conformación Proteica , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido
6.
Langmuir ; 25(7): 4065-9, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19714829

RESUMEN

We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions.


Asunto(s)
Aire , Nanoestructuras/química , Aceites/química , Agua/química , Alcanos/química , Propiedades de Superficie , Tensoactivos/química , Difracción de Rayos X
7.
Soft Matter ; 5(13): 2576-2586, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21311730

RESUMEN

To many biophysical characterisation techniques, biological membranes appear as two-dimensional structures with details of their third dimension hidden within a 5 nm profile. Probing this structure requires methods able to discriminate multiple layers a few Ångströms thick. Given sufficient resolution, neutron methods can provide the required discrimination between different biochemical components, especially when selective deuteration is employed. We have used state-of-the-art neutron reflection methods, with resolution enhancement via magnetic contrast variation to study an oriented model membrane system. The model is based on the Escherichia coli outer membrane protein OmpF fixed to a gold surface via an engineered cysteine residue. Below the gold is buried a magnetic metal layer which, in a magnetic field, displays different scattering strengths to spin-up and spin-down neutrons. This provides two independent datasets from a single biological sample. Simultaneous fitting of the two datasets significantly refines the resulting model. A ß-mercaptoethanol (ßME) passivating surface, applied to the gold to prevent protein denaturation, is resolved for the first time as an 8.2 ± 0.6 Å thick layer, demonstrating the improved resolution and confirming that this layer remains after OmpF assembly. The thiolipid monolayer (35.3 ± 0.5 Å), assembled around the OmpF is determined and finally a fluid DMPC layer is added (total lipid thickness 58.7 ± 0.9 Å). The dimensions of trimeric OmpF in isolation (53.6 ± 2.5 Å), after assembly of lipid monolayer (57.5 ± 0.9 Å) and lipid bilayer (58.7 ± 0.9 Å), are precisely determined and show little variation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA