Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep ; 15(3): 574-587, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27068473

RESUMEN

Homozygous deletions of p16/CDKN2A are prevalent in cancer, and these mutations commonly involve co-deletion of adjacent genes, including methylthioadenosine phosphorylase (MTAP). Here, we used shRNA screening and identified the metabolic enzyme, methionine adenosyltransferase II alpha (MAT2A), and the arginine methyltransferase, PRMT5, as vulnerable enzymes in cells with MTAP deletion. Metabolomic and biochemical studies revealed a mechanistic basis for this synthetic lethality. The MTAP substrate methylthioadenosine (MTA) accumulates upon MTAP loss. Biochemical profiling of a methyltransferase enzyme panel revealed that MTA is a potent and selective inhibitor of PRMT5. MTAP-deleted cells have reduced PRMT5 methylation activity and increased sensitivity to PRMT5 depletion. MAT2A produces the PRMT5 substrate S-adenosylmethionine (SAM), and MAT2A depletion reduces growth and PRMT5 methylation activity selectively in MTAP-deleted cells. Furthermore, this vulnerability extends to PRMT5 co-complex proteins such as RIOK1. Thus, the unique biochemical features of PRMT5 create an axis of targets vulnerable in CDKN2A/MTAP-deleted cancers.


Asunto(s)
Adenosina/análogos & derivados , Antígenos de Neoplasias/metabolismo , Eliminación de Gen , Metionina Adenosiltransferasa/metabolismo , Neoplasias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Transducción de Señal , Tionucleósidos/metabolismo , Adenosina/metabolismo , Genómica , Células HCT116 , Humanos , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Purina-Nucleósido Fosforilasa/deficiencia , ARN Interferente Pequeño/metabolismo
2.
J Biochem Mol Toxicol ; 27(10): 471-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918466

RESUMEN

We have recently shown that primary rat hepatocytes organized in micropatterned cocultures with murine embryonic fibroblasts (HepatoPac™) maintain high levels of liver functions for at least 4 weeks. In this study, rat HepatoPac was assessed for its utility to study chemical bioactivation and associated hepatocellular toxicity. Treatment of HepatoPac cultures with acetaminophen (APAP) over a range of concentrations (0-15 mM) was initiated at 1, 2, 3, or 4 weeks followed by the assessment of morphological and functional endpoints. Consistent and reproducible concentration-dependent effects on hepatocyte structure, viability, and basic functions were observed over the 4-week period, and were exacerbated by depleting glutathione using buthionine sulfoximine or inducing CYP3A using dexamethasone, presumably due to increased reactive metabolite-induced stress and adduct formation. In conclusion, the results from this study demonstrate that rat HepatoPac represents a structurally and functionally stable hepatic model system to assess the long-term effects of bioactivated compounds.


Asunto(s)
Acetaminofén/toxicidad , Adenosina Trifosfato/antagonistas & inhibidores , Analgésicos no Narcóticos/toxicidad , Glutatión/antagonistas & inhibidores , Hepatocitos/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Albúminas/metabolismo , Animales , Butionina Sulfoximina/farmacología , Técnicas de Cocultivo , Citocromo P-450 CYP3A/metabolismo , Dexametasona/farmacología , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Glutatión/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Masculino , Modelos Biológicos , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos , Urea/metabolismo
3.
Cell ; 135(5): 907-18, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041753

RESUMEN

Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.


Asunto(s)
Envejecimiento/genética , Cromatina/metabolismo , Inestabilidad Genómica , Sirtuinas/genética , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN , Células Madre Embrionarias , Técnicas de Inactivación de Genes , Humanos , Linfoma/metabolismo , Ratones , Datos de Secuencia Molecular , Estrés Oxidativo , Sirtuina 1 , Organismos Libres de Patógenos Específicos , Neoplasias del Timo/metabolismo , Levaduras/citología , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA