Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Neurobiol ; 56(6): 4231-4248, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30298339

RESUMEN

Increasing findings suggest that demyelination may play an important role in the pathophysiology of brain injury, but the exact mechanisms underlying such damage are not well known. Mechanical tensile strain of brain tissue occurs during traumatic brain injury. Several studies have investigated the cellular and molecular events following a static tensile strain of physiological magnitude on individual cells such as oligodendrocytes. However, the pathobiological impact of high-magnitude mechanical strain on oligodendrocytes and myelinated fibers remains under investigated. In this study, we reported that an applied mechanical tensile strain of 30% on mouse organotypic culture of cerebellar slices induced axonal injury and elongation of paranodal junctions, two hallmarks of brain trauma. It was also able to activate MAPK-ERK1/2 signaling, a stretch-induced responsive pathway. The same tensile strain applied to mouse oligodendrocytes in primary culture induced a profound damage to cell morphology, partial cell loss, and a decrease of myelin protein expression. The lower tensile strain of 20% also caused cell loss and the remaining oligodendrocytes appeared retracted with decreased myelin protein expression. Finally, high-magnitude tensile strain applied to 158N oligodendroglial cells altered myelin protein expression, dampened MAPK-ERK1/2 and MAPK-p38 signaling, and enhanced the production of reactive oxygen species. The latter was accompanied by increased protein oxidation and an alteration of anti-oxidant defense that was strain magnitude-dependent. In conclusion, mechanical stretch of high magnitude provokes axonal injury with significant alterations in oligodendrocyte biology that could initiate demyelination.


Asunto(s)
Axones/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Transducción de Señal , Estrés Mecánico , Animales , Antioxidantes/metabolismo , Adhesión Celular , Línea Celular , Forma de la Célula , Cerebelo/patología , Regulación de la Expresión Génica , Glutatión/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Tracción
2.
Proc Natl Acad Sci U S A ; 115(6): E1319-E1328, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29351992

RESUMEN

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in xenobiotic metabolism. Plexiform neurofibromas (PNFs) can transform into malignant peripheral nerve sheath tumors (MPNSTs) that are resistant to existing therapies. These tumors are primarily composed of Schwann cells. In addition to neurofibromatosis type 1 (NF1) gene inactivation, further genetic lesions are required for malignant transformation. We have quantified the mRNA expression levels of AHR and its associated genes in 38 human samples. We report that AHR and the biosynthetic enzymes of its endogenous ligand are overexpressed in human biopsies of PNFs and MPNSTs. We also detect a strong nuclear AHR staining in MPNSTs. The inhibition of AHR by siRNA or antagonists, CH-223191 and trimethoxyflavone, induces apoptosis in human MPNST cells. Since AHR dysregulation is observed in these tumors, we investigate AHR involvement in Schwann cell physiology. Hence, we studied the role of AHR in myelin structure and myelin gene regulation in Ahr-/- mice during myelin development. AHR ablation leads to locomotion defects and provokes thinner myelin sheaths around the axons. We observe a dysregulation of myelin gene expression and myelin developmental markers in Ahr-/- mice. Interestingly, AHR does not directly bind to myelin gene promoters. The inhibition of AHR in vitro and in vivo increased ß-catenin levels and stimulated the binding of ß-catenin on myelin gene promoters. Taken together, our findings reveal an endogenous role of AHR in peripheral myelination and in peripheral nerve sheath tumors. Finally, we suggest a potential therapeutic approach by targeting AHR in nerve tumors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Vaina de Mielina/patología , Neoplasias de la Vaina del Nervio/patología , Receptores de Hidrocarburo de Aril/fisiología , Animales , Apoptosis , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Transducción de Señal
3.
PLoS One ; 10(3): e0119707, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803850

RESUMEN

Glioblastoma (GBM) is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1) function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.


Asunto(s)
Toxinas Botulínicas/farmacología , Proliferación Celular/efectos de los fármacos , Glioblastoma/fisiopatología , ARN Interferente Pequeño/farmacología , Sintaxina 1/antagonistas & inhibidores , Animales , Western Blotting , Bromodesoxiuridina , Línea Celular Tumoral , Citometría de Flujo , Glioblastoma/tratamiento farmacológico , Humanos , Lentivirus , Ratones , Invasividad Neoplásica/prevención & control , ARN Interferente Pequeño/genética , Estadísticas no Paramétricas , Transducción Genética/métodos
4.
Proc Natl Acad Sci U S A ; 109(10): 3973-8, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22355115

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) inhibitors, especially the mood stabilizer lithium chloride, are also used as neuroprotective or anti-inflammatory agents. We studied the influence of LiCl on the remyelination of peripheral nerves. We showed that the treatment of adult mice with LiCl after facial nerve crush injury stimulated the expression of myelin genes, restored the myelin structure, and accelerated the recovery of whisker movements. LiCl treatment also promoted remyelination of the sciatic nerve after crush. We also demonstrated that peripheral myelin gene MPZ and PMP22 promoter activities, transcripts, and protein levels are stimulated by GSK3ß inhibitors (LiCl and SB216763) in Schwann cells as well as in sciatic and facial nerves. LiCl exerts its action in Schwann cells by increasing the amount of ß-catenin and provoking its nuclear localization. We showed by ChIP experiments that LiCl treatment drives ß-catenin to bind to T-cell factor/lymphoid-enhancer factor response elements identified in myelin genes. Taken together, our findings open perspectives in the treatment of nerve demyelination by administering GSK3ß inhibitors such as lithium.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Cloruro de Litio/farmacología , Vaina de Mielina/química , Nervios Periféricos/metabolismo , Animales , Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína P0 de la Mielina/metabolismo , Nervios Periféricos/efectos de los fármacos , Placebos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Transducción de Señal
5.
J Steroid Biochem Mol Biol ; 104(3-5): 293-300, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17428656

RESUMEN

Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3beta-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3beta-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3beta-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3beta-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3beta-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3beta-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3beta-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3beta-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males.


Asunto(s)
Lesiones Encefálicas/enzimología , Encéfalo/enzimología , Complejos Multienzimáticos/genética , Progesterona Reductasa/genética , Seudoembarazo/enzimología , Esteroide Isomerasas/genética , Animales , Encéfalo/metabolismo , Química Encefálica , Lesiones Encefálicas/patología , Femenino , Regulación Enzimológica de la Expresión Génica , Masculino , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Progesterona/análisis , Progesterona/sangre , Progesterona Reductasa/metabolismo , Seudoembarazo/patología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Esteroide Isomerasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA