Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39386486

RESUMEN

Caspase activated DNase (CAD) induced DNA breaks promote cell differentiation and therapy-induced cancer cell resistance. CAD targeting activity is assumed to be unique to each condition, as differentiation and cancer genesis are divergent cell fates. Here, we made the surprising discovery that a subset of CAD-bound targets in differentiating muscle cells are the same genes involved in the genesis of cancer-causing translocations. In muscle cells, a prominent CAD-bound gene pair is Pax7 and Foxo1a, the mismatched reciprocal loci that give rise to alveolar rhabdomyosarcoma. We show that CAD-targeted breaks in the Pax7 gene are physiologic to reduce Pax7 expression, a prerequisite for muscle cell differentiation. A cohort of these CAD gene targets are also conserved in early differentiating T cells and include genes that spur leukemia/lymphoma translocations. Our results suggest the CAD targeting of translocation prone oncogenic genes is non-pathologic biology and aligns with initiation of cell fate transitions.

2.
Trends Cell Biol ; 33(10): 850-859, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36997393

RESUMEN

Self-inflicted DNA strand breaks are canonically linked with cell death pathways and the establishment of genetic diversity in immune and germline cells. Moreover, this form of DNA damage is an established source of genome instability in cancer development. However, recent studies indicate that nonlethal self-inflicted DNA strand breaks play an indispensable but underappreciated role in a variety of cell processes, including differentiation and cancer therapy responses. Mechanistically, these physiological DNA breaks originate from the activation of nucleases, which are best characterized for inducing DNA fragmentation in apoptotic cell death. In this review, we outline the emerging biology of one critical nuclease, caspase-activated DNase (CAD), and how directed activation or deployment of this enzyme can lead to divergent cell fate outcomes.


Asunto(s)
Apoptosis , Neoplasias , Humanos , ADN/metabolismo , Daño del ADN , Neoplasias/genética , Diferenciación Celular , Roturas del ADN
3.
Science ; 377(6606): 666-669, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926054

RESUMEN

Muscle stem cells (MuSCs) reside in a specialized niche that ensures their regenerative capacity. Although we know that innate immune cells infiltrate the niche in response to injury, it remains unclear how MuSCs adapt to this altered environment for initiating repair. Here, we demonstrate that inflammatory cytokine signaling from the regenerative niche impairs the ability of quiescent MuSCs to reenter the cell cycle. The histone H3 lysine 27 (H3K27) demethylase JMJD3, but not UTX, allowed MuSCs to overcome inhibitory inflammation signaling by removing trimethylated H3K27 (H3K27me3) marks at the Has2 locus to initiate production of hyaluronic acid, which in turn established an extracellular matrix competent for integrating signals that direct MuSCs to exit quiescence. Thus, JMJD3-driven hyaluronic acid synthesis plays a proregenerative role that allows MuSC adaptation to inflammation and the initiation of muscle repair.


Asunto(s)
Ácido Hialurónico , Inflamación , Histona Demetilasas con Dominio de Jumonji , Músculo Esquelético , Mioblastos Esqueléticos , Regeneración , Nicho de Células Madre , Animales , Ciclo Celular , Histonas , Humanos , Ácido Hialurónico/biosíntesis , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-6 , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/metabolismo
4.
Science ; 376(6592): 476-483, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482866

RESUMEN

Genotoxic therapy such as radiation serves as a frontline cancer treatment, yet acquired resistance that leads to tumor reoccurrence is frequent. We found that cancer cells maintain viability during irradiation by reversibly increasing genome-wide DNA breaks, thereby limiting premature mitotic progression. We identify caspase-activated DNase (CAD) as the nuclease inflicting these de novo DNA lesions at defined loci, which are in proximity to chromatin-modifying CCCTC-binding factor (CTCF) sites. CAD nuclease activity is governed through phosphorylation by DNA damage response kinases, independent of caspase activity. In turn, loss of CAD activity impairs cell fate decisions, rendering cancer cells vulnerable to radiation-induced DNA double-strand breaks. Our observations highlight a cancer-selective survival adaptation, whereby tumor cells deploy regulated DNA breaks to delimit the detrimental effects of therapy-evoked DNA damage.


Asunto(s)
Daño del ADN , Neoplasias , Cromatina , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena , Reparación del ADN , Neoplasias/genética
5.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142688
6.
J Am Heart Assoc ; 7(23): e010404, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30486716

RESUMEN

Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.


Asunto(s)
Cardiomegalia/metabolismo , Caspasa 3/metabolismo , Gelsolina/metabolismo , Animales , Cardiomegalia/etiología , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Masculino , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 110(43): E4079-87, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101493

RESUMEN

Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response.


Asunto(s)
Cardiomegalia/enzimología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Miocitos Cardíacos/enzimología , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Broncodilatadores/farmacología , Cardiomegalia/patología , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Endotelina-1/farmacología , Activación Enzimática/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Hipertrofia , Técnicas In Vitro , Isoproterenol/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oligopéptidos/farmacología , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Vasoconstrictores/farmacología
8.
J Proteomics ; 81: 24-30, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23376483

RESUMEN

Proteostasis, the process of balancing protein production with protein degradation is vital to normal cell function. Defects within the mechanisms that control proteostasis lead to increased content of a specialized insoluble protein fraction that forms dense aggregates within the cell. We have previously implicated the Saccharomyces cerevisiae metacaspase Yca1 as an active participant in maintaining proteostasis, whereby Yca1 acts to limit aggregate content. Here, we further characterized the proteostasis role of Yca1 by conducting proteomic analysis of the insoluble protein fraction in wildtype and Yca1 knockout cells, under normal and heat stressed conditions. Our findings suggest that the composition of insoluble protein fraction is non-specific and comprises a wide array of protein species rather than a limited repertoire of aggregate susceptible proteins or peptides. Interestingly, the loss of Yca1 led to a significant decrease of proteins that control ribosome biogenesis and protein synthesis within the insoluble fraction, indicating that the cell may invoke a compensatory mechanism to limit protein production during stress, a feature dependent on Yca1 activity. Finally, we noted that protein degradation factors such as Cdc48 co-localize with Yca1 to the insoluble fraction, supporting the hypothesis that Yca1 may act primarily to dissolve or reduce accumulated aggregates. This article is part of a Special Issue entitled: From protein structures to clinical applications.


Asunto(s)
Caspasas/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Caspasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Silenciamiento del Gen , Biosíntesis de Proteínas/fisiología , Transporte de Proteínas/fisiología , Proteolisis , Proteoma/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Estrés Fisiológico/fisiología , Proteína que Contiene Valosina
9.
Front Oncol ; 2: 78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22837984

RESUMEN

The activation of caspase proteases and the targeting of protein substrates act as key steps in the engagement and conduct of apoptosis/programmed cell death. However, the discovery of caspase involvement in diverse non-apoptotic cellular functions strongly suggests that these proteins may have evolved from a core behavior unrelated to the induction of cell death. The presence of similar proteases, termed metacaspases, in single cell organisms supports the contention that such proteins may have co-evolved or derived from a critical non-death function. Indeed, the benefit(s) for single cell life forms to retain proteins solely dedicated to self destruction would be countered by a strong selection pressure to curb or eliminate such processes. Examination of metacaspase biology provides evidence that these ancient protease forerunners of the caspase family also retain versatility in function, i.e., death and non-death cell functions. Here, we provide a critical review that highlights the non-death roles of metacaspases that have been described thus far, and the impact that these observations have for our understanding of the evolution and cellular utility of this protease family.

10.
J Biol Chem ; 284(40): 27674-86, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19633357

RESUMEN

In skeletal muscle development, the genes and regulatory factors that govern the specification of myocytes are well described. Despite this knowledge, the mechanisms that regulate the coordinated assembly of myofiber proteins into the functional contractile unit or sarcomere remain undefined. Here we explored the hypothesis that modular domain proteins such as Bin1 coordinate protein interactions to promote sarcomere formation. We demonstrate that Bin1 facilitates sarcomere organization through protein-protein interactions as mediated by the Src homology 3 (SH3) domain. We observed a profound disorder in myofiber size and structural organization in a murine model expressing the Bin1 SH3 region. In addition, satellite cell-derived myogenesis was limited despite the accumulation of skeletal muscle-specific proteins. Our experiments revealed that the Bin1 SH3 domain formed transient protein complexes with both actin and myosin filaments and the pro-myogenic kinase Cdk5. Bin1 also associated with a Cdk5 phosphorylation domain of titin. Collectively, these observations suggest that Bin1 displays protein scaffold-like properties and binds with sarcomeric factors important in directing sarcomere protein assembly and myofiber maturation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fibras Musculares Esqueléticas/citología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Sarcómeros/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Dominios Homologos src , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diferenciación Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas Supresoras de Tumor/genética
11.
J Biol Chem ; 284(29): 19679-93, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19439412

RESUMEN

Skeletal myogenesis is potently regulated by the extracellular milieu of growth factors and cytokines. We observed that cardiotrophin-1 (CT-1), a member of the interleukin-6 (IL-6) family of cytokines, is a potent regulator of skeletal muscle differentiation. The normal up-regulation of myogenic marker genes, myosin heavy chain (MyHC), myogenic regulatory factors (MRFs), and myocyte enhancer factor 2s (MEF2s) were inhibited by CT-1 treatment. CT-1 also represses myogenin (MyoG) promoter activation. CT-1 activated two signaling pathways: signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase kinase (MEK), a component of the extracellular signal-regulated MAPK (ERK) pathway. In view of the known connection between CT-1 and STAT3 activation, we surprisingly found that pharmacological blockade of STAT3 activity had no effect on the inhibition of myogenesis by CT-1 suggesting that STAT3 signaling is dispensable for myogenic repression. Conversely, MEK inhibition potently reversed the inhibition of myotube formation and attenuated the repression of MRF transcriptional activity mediated by CT-1. Taken together, these data indicate that CT-1 represses skeletal myogenesis through interference with MRF activity by activation of MEK/ERK signaling. In agreement with these in vitro observations, exogenous systemic expression of CT-1 mediated by adenoviral vector delivery increased the number of myonuclei in normal post-natal mouse skeletal muscle and also delayed skeletal muscle regeneration induced by cardiotoxin injection. The expression pattern of CT-1 in embryonic and post-natal skeletal muscle and in vivo effects of CT-1 on myogenesis implicate CT-1 in the maintenance of the undifferentiated state in muscle progenitor cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Citocinas/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Animales , Western Blotting , Butadienos/farmacología , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , Ratones , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
12.
Am J Pathol ; 174(4): 1459-70, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19264909

RESUMEN

Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy, and although the genetic basis of this disease is well defined, the overall mechanisms that define its pathogenesis remain obscure. Alterations in individual signaling pathways have been described, but little information is available regarding their putative implications in Duchenne muscular dystrophy pathogenesis. Here, we studied the status of various major signaling pathways in the Golden Retriever muscular dystrophy dog that specifically reproduces the full spectrum of human pathology. Using antibody arrays, we found that Akt1, glycogen synthase kinase-3beta (GSK3beta), 70-kDa ribosomal protein S6 kinase (p70S6K), extracellular signal-regulated kinases 1/2, and p38delta and p38gamma kinases all exhibited decreased phosphorylation in muscle from a 4-month-old animal with Golden Retriever muscular dystrophy, revealing a deep alteration of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways. Immunohistochemistry analysis revealed the presence of muscle fibers exhibiting a cytosolic accumulation of Akt1, GSK3beta, and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN), an enzyme counteracting PI3K-mediated Akt activation. Enzymatic assays established that these alterations in phosphorylation and expression levels were associated with decreased Akt and increased GSK3beta and PTEN activities. PTEN/GSK3beta-positive fibers were also observed in muscle sections from 3- and 36-month-old animals, indicating long-term PI3K/Akt pathway alteration. Collectively, our data suggest that increased PTEN expression and activity play a central role in PI3K/Akt/GSK3beta and p70S6K pathway modulation, which could exacerbate the consequences of dystrophin deficiency.


Asunto(s)
Distrofia Muscular Animal/fisiopatología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Western Blotting , Perros , Distrofina/deficiencia , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inmunohistoquímica , Microscopía Confocal , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología
13.
PLoS One ; 3(8): e2956, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18698411

RESUMEN

Caspase proteases are a conserved protein family predominantly known for engaging and executing apoptotic cell death. Nevertheless, in higher eukaryotes, caspases also influence a variety of cell behaviors including differentiation, proliferation and growth control. S. cerevisiae expresses a primordial caspase, yca1, and exhibits apoptosis-like death under certain stresses; however, the benefit of a dedicated death program to single cell organisms is controversial. In the absence of a clear rationale to justify the evolutionary retention of a death only pathway, we hypothesize that yca1 also influences non-apoptotic events. We report that genetic ablation and/or catalytic inactivation of Yca1p leads to a longer G1/S transition accompanied by slower growth in fermentation conditions. Downregulation of Yca1p proteolytic activity also results in failure to arrest during nocodazole treatment, indicating that Yca1p participates in the G2/M mitotic checkpoint. 20s proteasome activity and ROS staining of the Delta yca1 strain is indistinguishable from its isogenic control suggesting that putative regulation of the oxidative stress response by Yca1p does not instigate the cell cycle phenotype. Our results demonstrate multiple non-death roles for yca1 in the cell cycle.


Asunto(s)
Caspasas/genética , Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Cisteína/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Fase G1 , Regulación Fúngica de la Expresión Génica , Nocodazol/farmacología , Fenotipo , Regiones Promotoras Genéticas , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell Stem Cell ; 2(6): 515-6, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18522841

RESUMEN

Activation of caspase-3 is generally acknowledged as a penultimate step in apoptotic cell death pathways. Two studies in this issue of Cell Stem Cell (Fujita et al., 2008; Janzen et al., 2008) provide compelling data to demonstrate that caspase-3 is also a conserved inductive cue for stem cell differentiation.


Asunto(s)
Caspasa 3/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Animales , Apoptosis , Caspasa 3/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Transducción de Señal/genética
15.
FASEB J ; 19(12): 1671-3, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16103108

RESUMEN

Caspase proteases have become the focal point for the development and application of anti-apoptotic therapies in a variety of central nervous system diseases. However, this approach is based on the premise that caspase function is limited to invoking cell death signals. Here, we show that caspase-3 activity is elevated in nonapoptotic differentiating neuronal cell populations. Moreover, peptide inhibition of protease activity effectively inhibits the differentiation process in a cultured neurosphere model. These results implicate caspase-3 activation as a conserved feature of neuronal differentiation and suggest that targeted inhibition of this protease in neural cell populations may have unintended consequences.


Asunto(s)
Encéfalo/embriología , Caspasas/biosíntesis , Neuronas/metabolismo , Células Madre/citología , Animales , Apoptosis , Caspasa 3 , Caspasas/metabolismo , Diferenciación Celular , Activación Enzimática , Citometría de Flujo , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Modelos Biológicos , Péptidos/química , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Curr Gene Ther ; 4(2): 195-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15180585

RESUMEN

Muscular dystrophies are broadly classed as skeletal muscle disease entities of genetic origin. Accordingly, the development and application of gene therapy treatment modalities has focused on skeletal muscle gene replacement. Irrespective of this generalization, most forms of dystrophy are accompanied by progressive cardiomyopathy and cardiac involvement in muscular dystrophies is now recognized as an independent risk for patient morbidity. In this review, we summarize the available murine strains most suitable for modeling the dystrophic myocardium and discuss the use of adenoviral based vector systems as the preferred gene delivery vehicle for modulating dystrophic cardiomyopathy.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/terapia , Terapia Genética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Adenoviridae/genética , Animales , Cardiomiopatías/complicaciones , Vectores Genéticos/genética , Humanos , Modelos Biológicos , Distrofias Musculares/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA