Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol Biochem ; 203: 108080, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37812990

RESUMEN

Although amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.


Asunto(s)
Pseudomonas , Solanum lycopersicum , Pseudomonas/fisiología , Transcriptoma , Resistencia a la Sequía , Solanum lycopersicum/genética , Metaboloma , Sequías , Estrés Fisiológico/genética
2.
PeerJ ; 11: e15043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013148

RESUMEN

Dill (Anethum graveolens L.) is an aromatic herb widely used in the food industry, with several commercial cultivars available with different qualitative characteristics. Commercial cultivars are usually preferred over landraces due to their higher yield and also the lack of improved landraces than can be commercialized. In Greece, however, traditional dill landraces are cultivated by local communities. Many are conserved in the Greek Gene Bank and the aim here was to investigate and compare the morphological, genetic, and chemical biodiversity of twenty-two Greek landraces and nine modern/commercial cultivars. Multivariate analysis of the morphological descriptors, molecular markers, and essential oil and polyphenol composition revealed that the Greek landraces were clearly distinguished compared with modern cultivars at the level of phenological, molecular and chemical traits. Landraces were typically taller, with larger umbels, denser foliage, and larger leaves. Plant height, density of foliage, density of feathering as well as aroma characteristics were desirable traits observed for some landraces, such as T538/06 and GRC-1348/04, which were similar or superior to those of some commercial cultivars. Polymorphic loci for inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular markers were 76.47% and 72.41% for landraces, and 68.24% and 43.10% for the modern cultivars, respectively. Genetic divergence was shown, but not complete isolation, indicating that some gene flow may have occurred between landraces and cultivars. The major constituent in all dill leaf essential oils was α-phellandrene (54.42-70.25%). Landraces had a higher α-phellandrene and dill ether content than cultivars. Two dill landraces were rich in chlorogenic acid, the main polyphenolic compound determined. The study highlighted for the first-time Greek landraces with desirable characteristics regarding quality, yield, and harvest time suitable for breeding programs to develop new dill cultivars with superior features.


Asunto(s)
Anethum graveolens , Esencias Florales , Aceites Volátiles , Anethum graveolens/genética , Genotipo , Fitomejoramiento , Aceites Volátiles/química , Análisis Multivariante
3.
Plants (Basel) ; 11(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214906

RESUMEN

The traditionally edible aerial parts of rock samphire (Crithmum maritimum L.) could be a valuable functional food or feed ingredient due to their high antioxidant capacity, ascorbic acid content, and rich content in secondary metabolites such as phenolics and flavonoids. The first objective of this study was to evaluate eighteen genotypes derived from different regions of Greece regarding the phytochemical contents of their soluble extracts in total phenolics, total flavonoids, and individual polyphenols as determined by LC-MS analysis, as well as ascorbic acid content and their antioxidant capacity as determined by different assays, including ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and FRAP (ferric reducing antioxidant power) assays. The second objective of the study was the molecular characterization of native Greek C. maritimum genotypes. Great variation among genotypes was observed in terms of the antioxidant capacity, ascorbic acid content, and phenolic compounds (total phenolic content and total flavonoid content), as well as in caffeolquinic acids and flavonoids. The principal component analysis highlighted genotypes with a higher potential in antioxidants and polyphenolics. The most promising genotypes were G9 from Kefalonia, followed by G4 from Ikaria, where both clearly exhibited a similar response with high values of evaluated traits. The molecular characterization of genotypes revealed low variability and low to moderate genetic diversity between populations. Our data indicated that the rock samphire germplasm collection from the Balkan Botanic Garden of Kroussia could serve as an important source of documented genetic material and, thus, it is suggested for further investigation to provide insight regarding cultivation and agro-processing aspects, artificial selection, or plant breeding aimed at developing C. maritimum genotypes of high-bioactive value.

4.
Funct Plant Biol ; 47(7): 651-658, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375995

RESUMEN

Understanding the molecular mode(s) of plant tolerance to heat stress (HS) is crucial since HS is a potential threat to sustainable agriculture and global crop production. Polyamines (PAs) seem to exert multifaceted effects in plant growth and development and responses to abiotic and biotic stresses, presumably via their homeostasis, chemical interactions and contribution to hydrogen peroxide (H2O2) cellular 'signatures'. Downregulation of the apoplastic POLYAMINE OXIDASE (PAO) gene improved thermotolerance in tobacco (Nicotiana tabacum L.) transgenics. However, in the present work we show that transgenic tobacco plants with antisense-mediated S-ADENOSYL-L-METHIONINE DECARBOXYLASE silencing (AS-NtSAMDC) exhibited enhanced sensitivity and delayed responses to HS which was accompanied by profound injury upon HS removal (recovery), as assessed by phenological, physiological and biochemical characteristics. In particular, the AS-NtSAMDC transgenics exhibited significantly reduced rate of photosynthesis, as well as enzymatic and non-enzymatic antioxidants. These transgenics suffered irreversible damage, which significantly reduced their growth potential upon return to normal conditions. These data reinforce the contribution of increased PA homeostasis to tolerance, and can move forward our understanding on the PA-mediated mechanism(s) conferring tolerance to HS that might be targeted via traditional or biotechnological breeding for developing HS tolerant plants.


Asunto(s)
Peróxido de Hidrógeno , Nicotiana , Carboxiliasas , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Peróxido de Hidrógeno/metabolismo , Fitomejoramiento , Nicotiana/metabolismo
5.
J Plant Physiol ; 218: 171-174, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28886452

RESUMEN

Polyamines (PAs) and hydrogen peroxide (H2O2), the product of PA oxidation by polyamine oxidase (PAO), are potential players affecting plant growth, development and responses to abiotic/biotic stresses. Genetically modified Nicotiana tabacum plants with altered PA/H2O2 homeostasis due to over/underexpression of the ZmPAO gene (S-ZmPAO/AS-ZmPAO, respectively) were assessed under heat stress (HS). Underexpression of ZmPAO correlates with increased thermotolerance of the photosynthetic machinery and improved biomass accumulation, accompanied by enhanced levels of the enzymatic and non-enzymatic antioxidants, whereas ZmPAO overexpressors exhibit significant impairment of thermotolerance. These data provide important clues on PA catabolism/H2O2/thermotolerance, which merit further exploitation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Termotolerancia , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Poliaminas/metabolismo , Zea mays/genética , Poliamino Oxidasa
6.
Front Chem ; 5: 95, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29468146

RESUMEN

Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, toward the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivars/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e., small tomato of Santorini island (cv. "Tomataki Santorinis") possesses appreciably high amounts of ascorbic acid (AsA). The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier "gene pool" as the basis of future adaptation. Toward this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical, and chemometric methods, flow injection analysis (FIA), optical sensors, and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop "omics" platforms (i.e., metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of optical sensors and IR spectroscopy is recommended to estimate the antioxidant activity rapidly and at low cost, although legislation does not allow its correlation with health claims.

7.
Front Plant Sci ; 7: 379, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064210

RESUMEN

Polyamines (PAs) are nitrogenous molecules that are indispensable for cell viability and with an agreed-on role in the modulation of stress responses. Tobacco plants with downregulated SAMDC (AS-SAMDC) exhibit reduced PAs synthesis but normal levels of PA catabolism. We used AS-SAMDC to increase our understanding on the role of PAs in stress responses. Surprisingly, at control conditions AS-SAMDC plants showed increased biomass and altered developmental characteristics, such as increased height and leaf number. On the contrary, during salt stress AS-SAMDC plants showed reduced vigor when compared to the WT. During salt stress, the AS-SAMDC plants although showing compensatory readjustments of the antioxidant machinery and of photosynthetic apparatus, they failed to sustain their vigor. AS-SAMDC sensitivity was accompanied by inability to effectively control H2O2 levels and concentrations of monovalent and divalent cations. In accordance with these findings, we suggest that PAs may regulate the trade-off between growth and tolerance responses.

8.
BMC Plant Biol ; 14: 11, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24401128

RESUMEN

BACKGROUND: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. RESULTS: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. CONCLUSIONS: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening.


Asunto(s)
Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos Cíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas/metabolismo , Solanum lycopersicum/fisiología
9.
BMC Plant Biol ; 12: 239, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23245200

RESUMEN

BACKGROUND: To gain insight into the regulation of fruit ascorbic acid (AsA) pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the 'low-' and 'high-AsA' tomato cultivars 'Ailsa Craig' and 'Santorini' respectively. RESULTS: The two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate) and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages. In addition, we show that young fruits display a higher AsA biosynthetic capacity than mature ones, but this does not lead to higher AsA concentrations due to either enhanced rates of AsA breakdown ('Ailsa Craig') or decreased rates of AsA recycling ('Santorini'), depending on the cultivar. In the later stages of ripening, differences in fruit totAsA-AsA concentrations of the two cultivars can be explained by differences in the rate of AsA recycling activities. Analysis of the expression of AsA metabolic genes showed that only the expression of one orthologue of GDP-L-galactose phosphorylase (SlGGP1), and of two monodehydroascorbate reductases (SlMDHAR1 and SlMDHAR3) correlated with the changes in fruit totAsA-AsA concentrations during fruit ripening in 'Ailsa Craig', and that only the expression of SlGGP1 was linked to the high AsA concentrations found in red ripe 'Santorini' fruits. CONCLUSIONS: Results indicate that 'Ailsa Craig' and 'Santorini' use complementary mechanisms to maintain the fruit AsA pool. In the low-AsA cultivar ('Ailsa Craig'), alternative routes of AsA biosynthesis may supplement biosynthesis via L-galactose, while in the high-AsA cultivar ('Santorini'), enhanced AsA recycling activities appear to be responsible for AsA accumulation in the later stages of ripening. Gene expression studies indicate that expression of SlGGP1 and two orthologues of SlMDHAR are closely correlated with totAsA-AsA concentrations during ripening and are potentially good candidates for marker development for breeding and selection.


Asunto(s)
Ácido Ascórbico/biosíntesis , Frutas/química , Solanum lycopersicum/química , Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión/análisis , Solanum lycopersicum/clasificación , Solanum lycopersicum/genética
10.
Plant Physiol ; 160(3): 1613-29, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23001142

RESUMEN

To identify the genetic factors underlying the regulation of fruit vitamin C (L-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-L-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.


Asunto(s)
Alelos , Ácido Ascórbico/metabolismo , Frutas/genética , Malus/enzimología , Malus/genética , Monoéster Fosfórico Hidrolasas/genética , Homología de Secuencia de Aminoácido , Antioxidantes/metabolismo , Secuencia de Bases , Vías Biosintéticas/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Estudios de Asociación Genética , Variación Genética , Glutatión/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/química , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable
11.
J Exp Bot ; 60(2): 663-78, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19129160

RESUMEN

L-ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-ascorbate intake has been implicated in the prevention/alleviation of varied human ailments and diseases including cancer. To study the regulation of accumulation of this important nutraceutical in fruit, the expression of 24 tomato (Solanum lycopersicon) genes involved in the biosynthesis, oxidation, and recycling of L-ascorbate during the development and ripening of fruit have been characterized. Taken together with L-ascorbate abundance data, the results show distinct changes in the expression profiles for these genes, implicating them in nodal regulatory roles during the process of L-ascorbate accumulation in tomato fruit. The expression of these genes was further studied in the context of abiotic and post-harvest stress, including the effects of heat, cold, wounding, oxygen supply, and ethylene. Important aspects of the hypoxic and post-anoxic response in tomato fruit are discussed. The data suggest that L-galactose-1-phosphate phosphatase could play an important role in regulating ascorbic acid accumulation during tomato fruit development and ripening.


Asunto(s)
Ácido Ascórbico/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Perfilación de la Expresión Génica , Genes de Plantas , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Estrés Fisiológico/genética , Anaerobiosis/efectos de los fármacos , Ácido Ascórbico/biosíntesis , Ácido Ascórbico/metabolismo , Etilenos/farmacología , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA