Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Phytoremediation ; 19(11): 976-984, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28165773

RESUMEN

Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.


Asunto(s)
Biodegradación Ambiental , Cobre , Fabaceae , Gases de Efecto Invernadero , Populus , Salix , Atmósfera , Biomasa , Carbonato de Calcio , Magnesio , Suelo , Microbiología del Suelo , Oligoelementos
2.
Environ Pollut ; 113(1): 19-26, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11351758

RESUMEN

Ralstonia eutropha strain AE2515 was constructed and optimised to serve as a whole-cell biosensor for the detection of bioavailable concentrations of Ni2+ and Co2+ in soil samples. Strain AE2515 is a Ralstonia eutropha CH34 derivative containing pMOL1550, in which the cnrYXH regulatory genes are transcriptionally fused to the bioluminescent luxCDABE reporter system. Strain AE2515 was standardised for its specific responses to Co2+ and Ni2+. The detection limits for AE2515 were 0.1 microM Ni2+ and 9 microM Co2+, respectively. The signal to noise (S/N) bioluminescence response and the metal cation concentration could be linearly correlated: for Ni2+ this was applicable within the range 0.1-60 microM, and between 9 and 400 microM for Co2+. The AE2515 biosensor strain was found to be highly selective for nickel and cobalt: no induction was observed with Zn(II), Cd(II), Mn(II), Cu(III) and Cr(VI). In mixed metal solutions, the bioluminescent response always corresponded to the nickel concentrations. Only in the presence of high concentrations of Co2+ (2 mM), the sensitivity to nickel was reduced due to metal toxicity. AE2515 was used to quantify the metal bioavailability in various nickel-enriched soils, which had been treated with additives for in situ metal immobilisation. The data obtained with strain AE2515 confirmed that the bioavailability of nickel was greatly reduced following the treatment of the soils with the additives beringite and steel shots. Furthermore, the data were found to correlate linearly with those on the biological accumulation of Ni2+ in specific parts of important agricultural crops, such as maize and potato. Therefore, the test can be used to assess the potential transfer of nickel to organisms of higher trophic levels, in this case maize and potato plants grown on nickel-enriched soils, and the potential risk of transfer of these elements to the food chain.


Asunto(s)
Técnicas Biosensibles , Cobre/análisis , Cupriavidus necator , Monitoreo del Ambiente , Níquel/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Humanos , Mediciones Luminiscentes
3.
Environ Pollut ; 95(1): 93-103, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-15093478

RESUMEN

Preliminary results from the French ASPITET programme demonstrated that Cd background levels in agricultural soils can vary greatly (0.02-6.9 mg Cd kg(-1)) depending on parent material and pedogenic processes (Baize, 1997). However, the total Cd content in soil is often not significantly related to the Cd concentration in edible plant parts. A field case study was undertaken across the southern part of the Yonne district, Burgundy, France. This area has various soil series with either low or high geochemical Cd content in the topsoil. Cd availability in soils sampled at 16 sites belonging to five soil series was investigated using single extractions. In addition, shoots (at stem elongation) and grains (at harvest) of field-grown wheat were collected at the same sites and analysed for macronutrients and trace elements. Cd concentrations in grain varied from 0.015 to 0.146 mg Cd kg(-1) DM depending on soil characteristics, soil series, and plant mineral composition. Cd grain concentrations did not reflect total Cd content in the surface soil layer; however, they were correlated with Cd extracted by a 0.1 M calcium nitrate unbuffered solution, and to a lesser extent with either soil pH or CEC. These three parameters may be useful guides to predict Cd in wheat grain harvested in the Yonne district. An inverse relationship was found between Cd and Cu contents in grain. The highest Cd concentrations in wheat grain occurred in plants grown on Aubues soils which had marginal Cu and Zn deficiencies in shoots. In order of Cd accumulation in wheat grain, soil series may be ranked as follows: Domérien < Carixien, Terres Noires < Sols Marron < Aubues.

4.
Environ Pollut ; 86(3): 279-86, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-15091619

RESUMEN

Metal-contaminated soils in the vicinity of industrial sites become of ever-increasing concern. Diagnostic criteria and ecological technologies for soil remediation should be calibrated for various soil conditions; actually, our knowledge of calcareous soil is poor. Silty soils near smelters at Evin (Pas de Calais, France) have been contaminated by non-ferrous metal fallout and regularly limed using foams. Therefore, the mobility, bioavailability, and potential phytotoxicity of Cd, Pb and Zn, were investigated using single soil extractions (i.e. water, 0.1 n Ca(NO(3))(2), and EDTA pH 7), and vegetation experiments, in parallel with a biological test based on (iso)-enzymes in leaves and roots, before and following soil treatment with chemical agents, i.e. Thomas basic slags (TBS), hydrous manganese oxide (HMO), steel shots (ST) and beringite. No visible toxicity symptoms developed on the above-ground parts of ryegrass, tobacco and bean plants grown in potted soil under controlled environmental conditions. Cd, Zn and Pb uptake resulted in high concentrations in the above-ground plant parts, but the enzyme capacities in leaves and roots, and the peroxidase pattern indicated that these metal concentrations were not phytotoxic for beans as test plants. The addition of chemical agents to the soil did not increase biomass production, but treatment with either HMO, ST or beringite markedly decreased the mobility of Cd, Zn and Pb. These agents were proven to be effective in mitigating the Cd uptake by plants. HMO and ST decreased either Pb or Zn uptake by ryegrass. TBS was effective in lowering Pb uptake by the same species. Beringite decreased Cd uptake by beans. If fallout could be restricted, the metal content of food crops in this area should be lowered by soil treatment. However, the differences in Cd uptake between plant species were not suppressed, regardless of the type of agents applied to the soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA