Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830774

RESUMEN

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Asunto(s)
Materiales Biocompatibles , Estimulación Eléctrica , Grafito , Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Hidrogeles/química , Hidrogeles/farmacología , Grafito/química , Grafito/farmacología , Regeneración Nerviosa/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ensayo de Materiales , Ratas , Células PC12 , Ingeniería de Tejidos
2.
J Mater Chem B ; 11(3): 581-593, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36533419

RESUMEN

The development of electroactive cell-laden hydrogels (bioscaffolds) has gained interest in neural tissue engineering research due to their inherent electrical properties that can induce the regulation of cell behaviour. Hydrogels combined with electrically conducting materials can respond to external applied electric fields, where these stimuli can promote electro-responsive cell growth and proliferation. A successful neural interface for electrical stimulation should present the desired stable electrical properties, such as high conductivity, low impedance, increased charge storage capacity and similar mechanical properties related to a target neural tissue. We report how different electrical stimulation protocols can impact neuronal cells' survival and proliferation when using cell-laden GelMA/GO hydrogels. The rat pheochromocytoma cell line, PC12s encapsulated into hydrogels showed an increased proliferation behaviour with increasing current amplitudes applied. Furthermore, the presence of GO in GelMA hydrogels enhanced the metabolic activity and DNA content of PC12s compared with GelMA alone. Similarly, hydrogels provided survival of encapsulated cells at higher current amplitudes when compared to cells seeded onto ITO flat surfaces, which expressed significant cell death at a current amplitude of 2.50 mA. Our findings provide new rational choices for electroactive hydrogels and electrical stimulation with broad potential applications in neural tissue engineering research.


Asunto(s)
Hidrogeles , Andamios del Tejido , Ratas , Animales , Hidrogeles/farmacología , Supervivencia Celular , Estimulación Eléctrica , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA