Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microbiol Res ; 284: 127727, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636241

RESUMEN

Heme oxygenase HO-1 (HMOX) regulates cellular inflammation and apoptosis, but its role in regulation of autophagy in Mycoplasma bovis infection is unknown. The objective was to determine how the HO-1/CO- Protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Ca2+- transcription factor EB (TFEB) signaling axis induces autophagy and regulates clearance of M. bovis by bovine mammary epithelial cells (bMECs). M. bovis inhibited autophagy and lysosomal biogenesis in bMECs and suppressed HO-1 protein and expression of related proteins, namely nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (keap1). Activation of HO-1 and its production of carbon monoxide (CO) were required for induction of autophagy and clearance of intracellular M. bovis. Furthermore, when HO-1 was deficient, CO sustained cellular autophagy. HO-1 activation increased intracellular calcium (Ca2+) and cytosolic localization activity of TFEB via PERK. Knockdown of PERK or chelation of intracellular Ca2+ inhibited HO-1-induced M. bovis autophagy and clearance. M. bovis infection affected nuclear localization of lysosomal TFEB in the MiT/TFE transcription factor subfamily, whereas activation of HO-1 mediated dephosphorylation and intranuclear localization of TFEB, promoting autophagy, lysosomal biogenesis and autophagic clearance of M. bovis. Nuclear translocation of TFEB in HO-1 was critical to induce M. bovis transport and survival of infected bMECs. Furthermore, the HO-1/CO-PERK-Ca2+-TFEB signaling axis induced autophagy and M. bovis clearance, providing a viable approach to treat persistent M. bovis infections.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Calcio , Núcleo Celular , Retículo Endoplásmico , Células Epiteliales , Glándulas Mamarias Animales , Mycoplasma bovis , Animales , Bovinos , Femenino , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Calcio/metabolismo , Monóxido de Carbono/metabolismo , Núcleo Celular/metabolismo , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Retículo Endoplásmico/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Lisosomas/metabolismo , Glándulas Mamarias Animales/microbiología , Glándulas Mamarias Animales/metabolismo , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Transducción de Señal
2.
J Nanobiotechnology ; 22(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166978

RESUMEN

Chemodynamic therapy (CDT) is seriously limited by the inadequacy of exogenous catalytic ions and endogenous H2O2 in tumors. Herein, a multifunction nano-bomb integrated with calcium peroxide (CaO2) and ß-lapachone as donors of H2O2 and GSH-sensitive Fe-based coordination polymer as provider of catalytic ions was constructed for dual cascade-amplified tumor CDT. This hyaluronic acid (HA)-modified nano-bomb could be specially endocytosed by breast cancer cells through a targeting pathway, degraded and released cargoes in response to the GSH-rich cytoplasm. Furthermore, the released CaO2 and ß-lapachone could significantly self-generated sufficient H2O2, which could dual-cascade amplify CDT and induce severe oxidative to tumors via cooperating with the delivered iron ions from nano-bombs. Moreover, the unloaded iron and calcium ions could further accelerate tumor damage by overloading Ca2+ and ferroptosis, as accompanied by good magnetic resonance imaging (MRI). In vitro and in vivo studies collectively reveal that this nano-bomb not only self-initiates double cascade-amplified CDT via self-generation of H2O2, but also efficiently activates ferroptosis and initiates Ca2+ overloading, consequently significantly tumor growth suppression. This study offers a novel tumor-initiated nano-bomb for dual cascade-amplified CDT and bioimaging with activated ferroptosis and self-supplying H2O2.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Peróxido de Hidrógeno , Hierro , Línea Celular Tumoral
3.
ACS Nano ; 18(4): 3134-3150, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38236616

RESUMEN

Immunotherapy is restricted by a complex tumor immunosuppressive microenvironment (TIM) and low drug delivery efficiency. Herein, a multifunctional adjuvant micelle nanosystem (PPD/MPC) integrated with broken barriers and re-education of three classes of immune-tolerant cells is constructed for cancer immunotherapy. The nanosystem significantly conquers the penetration barrier via the weakly acidic tumor microenvironment-responsive size reduction and charge reversal strategy. The detached core micelle MPC could effectively be internalized by tumor-associated macrophages (TAMs), tumor-infiltrating dendritic cells (TIDCs), and myeloid-derived suppressor cells (MDSCs) via mannose-mediated targeting endocytosis and electrostatic adsorption pathways, promoting the re-education of immunosuppressive cells for allowing them to reverse from pro-tumor to antitumor phenotypes by activating TLR4/9 pathways. This process in turn leads to the remodeling of TIM. In vitro and in vivo studies collectively indicate that the adjuvant micelle-based nanosystem not only relieves the intricate immune tolerance and remodels TIM via reprogramming the three types of immunosuppressive cells and regulating the secretion of relevant cytokines/immunity factors but also strengthens immune response and evokes immune memory, consequently suppressing the tumor growth and metastasis.


Asunto(s)
Micelas , Neoplasias , Humanos , Inmunoterapia , Inmunosupresores/farmacología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Neoplasias/terapia , Microambiente Tumoral , Línea Celular Tumoral
4.
Small ; 19(42): e2303253, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37330663

RESUMEN

Tumor-dependent glucose and glutamine metabolisms are essential for maintaining survival, while the accordingly metabolic suppressive therapy is limited by the compensatory metabolism and inefficient delivery efficiency. Herein, a functional metal-organic framework (MOF)-based nanosystem composed of the weakly acidic tumor microenvironment-activated detachable shell and reactive oxygen species (ROS)-responsive disassembled MOF nanoreactor core is designed to co-load glycolysis and glutamine metabolism inhibitors glucose oxidase (GOD) and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) for tumor dual-starvation therapy. The nanosystem excitingly improves tumor penetration and cellular uptake efficiency via integrating the pH-responsive size reduction and charge reversal and ROS-sensitive MOF disintegration and drug release strategy. Furthermore, the degradation of MOF and cargoes release can be self-amplified via additional self-generation H2 O2 mediated by GOD. Last, the released GOD and BPTES collaboratively cut off the energy supply of tumors and induce significant mitochondrial damage and cell cycle arrest via simultaneous restriction of glycolysis and compensatory glutamine metabolism pathways, consequently realizing the remarkable triple negative breast cancer killing effect in vivo with good biosafety via the dual starvation therapy.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/farmacología , Glutamina/metabolismo , Glutamina/uso terapéutico , Especies Reactivas de Oxígeno , Glucosa , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nanotecnología , Glucosa Oxidasa/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
5.
J Nanobiotechnology ; 21(1): 127, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041537

RESUMEN

Tumor microenvironment is characterized by the high concentration of reactive oxygen species (ROS), which is an effective key used to open the Pandora's Box against cancer. Herein, a tumor-targeted nanosystem HFNP@GOX@PFC composed of ROS-cleaved Fe-based metal-organic framework, hyaluronic acid (HA), glucose oxidase (GOX) and perfluorohexane (PFC) has been developed for tumor cascade amplified starvation and chemodynamic therapy (CDT). In response to the high concentration of hydrogen peroxide (H2O2) intratumorally, HFNP@GOX@PFC endocytosed by tumor cells can specially be disassembled and release GOX, PFC and Fe2+, which can collectively starve tumor and self-produce additional H2O2 via competitively glucose catalyzing, supply oxygen to continuous support GOX-mediated starvation therapy, initiate CDT and cascade amplify oxidative stress via Fe2+-mediated Fenton reaction, leading to the serious tumor damage with activated p53 signal pathway. Moreover, HFNP@GOX@PFC also significantly initiates antitumor immune response via re-educating tumor-associated macrophages (TAMs) by activating NF-κB and MAPK signal pathways. In vitro and in vivo results collectively demonstrate that nanosystem not only continuously initiates starvation therapy, but also pronouncedly cascade-amplify CDT and polarize TAMs, consequently efficiently inhibiting tumor growth with good biosafety. The functional nanosystem combined the cascade amplification of starvation and CDT provides a new nanoplatform for tumor therapy.


Asunto(s)
Inanición , Macrófagos Asociados a Tumores , Humanos , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Endocitosis , Glucosa , Glucosa Oxidasa
6.
Mater Today Bio ; 16: 100449, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36238964

RESUMEN

The starvation therapy mediated by the lonidamine (LND) was limited by the low drug delivery efficiency, off-target effect and compensative glutamine metabolism. Herein, a hyaluronic acid (HA)-modified reduction-responsive micellar nanosystem co-loaded with glycolysis and glutamine metabolism inhibitor (LND and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl)ethyl sulfide, BPTES) was constructed for tumor-targeted dual-starvation therapy. The in vitro and in vivo results collectively suggested that the fabricated nanosystem could effectively endocytosed by tumor cells via HA receptor-ligand recognition, and rapidly release starvation-inducers LND and BPTES in response to the GSH-rich intratumoral cytoplasm. Furthermore, the released LND and BPTES were capable of inducing glycolysis and glutamine metabolism suppression, and accompanied by significant mitochondrial damage, cell cycle arrest and tumor cells apoptosis, eventually devoting to the blockade of the energy and substance supply and tumor killing with high efficiency. In summary, HPPPH@L@B nanosystem significantly inhibited the compensatory glycolysis and glutamine metabolism via the dual-starvation therapy strategy, blocked the indispensable energy and substance supply of tumors, consequently leading to the desired tumor starvation and effective tumor killing with reliable biosafety.

7.
Cardiovasc Intervent Radiol ; 45(10): 1524-1533, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35896687

RESUMEN

PURPOSE: To evaluate the efficiency of radiomics signatures in predicting the response of transarterial chemoembolization (TACE) therapy based on preoperative contrast-enhanced computed tomography (CECT). MATERIALS: This study consisted of 111 patients with intermediate-stage hepatocellular carcinoma who underwent CECT at both the arterial phase (AP) and venous phase (VP) before and after TACE. According to mRECIST 1.1, patients were divided into an objective-response group (n = 38) and a non-response group (n = 73). Among them, 79 patients were assigned as the training dataset, and the remaining 32 cases were assigned as the test dataset. METHODS: Radiomics features were extracted from CECT images. Two feature ranking methods and three classifiers were used to find the best single-phase radiomics signatures for both AP and VP on the training set. Meanwhile, multi-phase radiomics signatures were built upon integration of images from two CECT phases by decision-level fusion and feature-level fusion. Finally, multivariable logistic regression was used to develop a nomogram by combining radiomics signatures and clinic-radiologic characteristics. The prediction performance was evaluated by AUC on the test dataset. RESULTS: The multi-phase radiomics signature (AUC = 0.883) performed better in predicting TACE therapy response compared to the best single-phase radiomics signature (AUC = 0.861). The nomogram (AUC = 0.913) showed better performance than any radiomics signatures. CONCLUSION: The radiomics signatures and nomogram were developed and validated for predicting responses to TACE therapy, and the radiomics model may play a positive role in identifying patients who may benefit from TACE therapy in clinical practice.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Nomogramas , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
8.
Nat Commun ; 13(1): 2688, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577812

RESUMEN

Inhibited immune response and low levels of delivery restrict starvation cancer therapy efficacy. Here, we report on the co-delivery of glucose oxidase (GOx) and indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan using a metal-organic framework (MOF)-based nanoreactor, showing an amplified release for tumor starvation/oxidation immunotherapy. The nanosystem significantly overcomes the biobarriers associated with tumor penetration and improves the cargo bioavailability owing to the weakly acidic tumor microenvironment-activated charge reversal and size reduction strategy. The nanosystem rapidly disassembles and releases cargoes in response to the intracellular reactive oxygen species (ROS). GOx competitively consumes glucose and generates ROS, further inducing the self-amplifiable MOF disassembly and drug release. The starvation/oxidation combined IDO-blockade immunotherapy not only strengthens the immune response and stimulates the immune memory through the GOx-activated tumor starvation and recruitment of effector T cells, but also effectively relieves the immune tolerance by IDO blocking, remarkably inhibiting the tumor growth and metastasis in vivo.


Asunto(s)
Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa , Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Línea Celular Tumoral , Glucosa Oxidasa/uso terapéutico , Humanos , Inmunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Estructuras Metalorgánicas/uso terapéutico , Nanotecnología , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Microambiente Tumoral
9.
Biomaterials ; 276: 121010, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34247042

RESUMEN

Immunosuppressive tumor microenvironment and low delivery efficiency severely impede the tumor chemotherapy effect. To address this issue, we develop a pH/ROS cascade-responsive prodrug micelle to deliver siTGF-ß with size-shrinkage and charge-reversal property, leading to synergistical tumor microenvironment remodeling. The nanosystem highly improved endocytosis efficiency and tumor penetration depth through charge reversal and size reduction upon exposure to weakly acidic tumor microenvironment. Moreover, the nanocarrier would rapidly escape from endo/lysosome, disassemble and release siTGF-ß and hydroxycamptothecin in response to high intracellular ROS. Furthermore, the nanosystem significantly boosted antitumor immune response and reduced immune tolerance with remodeling tumor microenvironment, which significantly prolonged the survival time of tumor-bearing mice (75% survival rate upon 35 days). It is realized by the combined effects of chemotherapy-enhanced immunogenicity and recruitment of effector T cells, TGF-ß-blockade immunotherapy-activated inhibition immunosuppressive tumor microenvironment and epithelial-to-mesenchymal transition (EMT), and regulation physical tumor microenvironment via reducing the dense tumor extracellular matrix and the high tumor interstitial pressure obstacles. To this end, the nanosystem not only overcame biobarriers and reinforced antitumor immune response, but also effectively inhibited tumor growth, metastasis and recurrence in vivo.


Asunto(s)
Inmunoterapia , Nanopartículas , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Microambiente Tumoral , Animales , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Ratones , Micelas , Especies Reactivas de Oxígeno
10.
J Magn Reson Imaging ; 52(4): 1083-1090, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32233054

RESUMEN

BACKGROUND: In unresectable hepatocellular carcinoma (HCC), methods to predict patients at increased risk of progression are required. PURPOSE: To investigate the feasibility of radiomics model in predicting early progression of unresectable HCC after transcatheter arterial chemoembolization (TACE) therapy using preoperative multiparametric magnetic resonance imaging (MP-MRI). STUDY TYPE: Retrospective. POPULATION: A total of 84 patients with BCLC B stage HCC from one medical center. According to the modified response evaluation criteria in solid tumors, patients who progressed at 6 months after TACE therapy were assigned as the progressive disease (PD) group (n = 32). Patients whose MRI was performed on four devices were divided into a training cohort (n = 67). Patients whose MRI was performed on other than the previous four devices were used as the testing set (n = 17). FIELD STRENGTH/SEQUENCE: 3.0T, 1.5T axial T2 -weighted imaging (T2 WI), diffusion-weighted imaging (DWI, b = 0, 500 s/mm2 ), and apparent diffusion coefficient (ADC) ASSESSMENT: PD was confirmed via imaging studies with MRI. Risk factors, including age, alpha fetoprotein (AFP), size, and radiomic-related features of PD were assessed. In addition, the discrimination ability of each radiomics signature was tested on an independent testing set. STATISTICAL TESTS: The area under the receiver-operator characteristic (ROC) curve (AUC) was used to evaluate the predictive accuracy of the radiomic signature in both the training and testing sets. The results indicated that the MP-MRI model achieved the greatest benefit. RESULTS: In the testing set, the model based on DWI features presented an AUC of (b = 0, 0.786; b = 500, 0.729), followed by T2 WI features (0.729) and ADC (0.714). The AUC of the MP-MRI signature was increased to 0.800 compared to any single MRI signature. The multivariate logistic analysis identified the radiomics signature as independent parameters of PD, while clinical information such as age, AFP, size, etc., had no significance in the PD group. DATA CONCLUSION: Preoperative MP-MRI has the potential to predict the outcome of TACE therapy for unresectable HCC. In addition, these image features may be complementary to the current staging systems of HCC patients. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 3. J. Magn. Reson. Imaging 2020;52:1083-1090.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Imagen por Resonancia Magnética , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA