Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Control Release ; 356: 72-83, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813038

RESUMEN

The transmembrane receptor LGR5 potentiates Wnt/ß-catenin signaling by binding both secreted R-spondin (RSPOs) and the Wnt tumor suppressors RNF43/ZNRF3, directing clearance of RNF43/ZNRF3 from the cell surface. Besides being widely used as a stem cell marker in various tissues, LGR5 is overexpressed in many types of malignancies, including colorectal cancer. Its expression characterizes a subpopulation of cancer cells that play a crucial role in tumor initiation, progression and cancer relapse, known as cancer stem cells (CSCs). For this reason, ongoing efforts are aimed at eradicating LGR5-positive CSCs. Here, we engineered liposomes decorated with different RSPO proteins to specifically detect and target LGR5-positive cells. Using fluorescence-loaded liposomes, we show that conjugation of full-length RSPO1 to the liposomal surface mediates aspecific, LGR5-independent cellular uptake, largely mediated by heparan sulfate proteoglycan binding. By contrast, liposomes decorated only with the Furin (FuFu) domains of RSPO3 are taken up by cells in a highly specific, LGR5-dependent manner. Moreover, encapsulating doxorubicin in FuFuRSPO3 liposomes allowed us to selectively inhibit the growth of LGR5-high cells. Thus, FuFuRSPO3-coated liposomes allow for the selective detection and ablation of LGR5-high cells, providing a potential drug delivery system for LGR5-targeted anti-cancer strategies.


Asunto(s)
Liposomas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Furina/metabolismo , Vía de Señalización Wnt , Sistemas de Liberación de Medicamentos , Células Madre Neoplásicas/metabolismo
2.
Nat Commun ; 11(1): 4586, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934222

RESUMEN

Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43 activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of RNF43 is required for zebrafish development and growth of mouse intestinal organoids. Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt signalling while maintaining its inhibitory function in p53 signalling. Our data suggest that RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the serine trio restored the tumour suppressive activity of extracellular oncogenic mutants. Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy for tumours with RNF43 mutations.


Asunto(s)
Carcinogénesis/metabolismo , Receptores Wnt/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinogénesis/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Fosforilación , Proteolisis , Receptores Wnt/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Vía de Señalización Wnt
3.
mBio ; 11(2)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184238

RESUMEN

Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.


Asunto(s)
Células Epiteliales/virología , Inmunidad Innata , Intestinos/citología , Norovirus/fisiología , ARN Polimerasa II/metabolismo , Replicación Viral , Línea Celular , Células Epiteliales/inmunología , Humanos , Interferón Tipo I/inmunología , Intestinos/virología , Quinasas Janus/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Transcripción Genética
4.
Trends Cell Biol ; 30(1): 60-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31718893

RESUMEN

Intestinal organoids grown from adult stem cells have emerged as prototype 3D organotypic models for studying tissue renewal and homeostasis. Owing to their strict dependence on Wnt signaling, intestinal organoids offer an unprecedented opportunity to examine Wnt pathway regulation in normal physiology and cancer. We review how alterations in growth factor dependency and organoid morphology can be exploited to identify Wnt signaling mechanisms, characterize mutated pathway components, and predict responses of patient-derived tumors to targeted therapy. We discuss current deficits in the understanding of genotype-phenotype relationships that are to be considered when interpreting mutation-induced changes in organoid morphology.


Asunto(s)
Imagenología Tridimensional , Intestinos/fisiología , Organoides/metabolismo , Vía de Señalización Wnt , Animales , Estudios de Asociación Genética , Humanos , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA