Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Virol ; 87(8): 4339-51, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388726

RESUMEN

We have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2, as well as to that of poliovirus. The phylogenetic position of the EV68 3C(pro) between the corresponding enzymes of rhinoviruses on the one hand and classical enteroviruses on the other prompted us to use the crystal structure for the design of irreversible inhibitors, with the goal of discovering broad-spectrum antiviral compounds. We synthesized a series of peptidic α,ß-unsaturated ethyl esters of increasing length and for each inhibitor candidate, we determined a crystal structure of its complex with the EV68 3C(pro), which served as the basis for the next design round. To exhibit inhibitory activity, compounds must span at least P3 to P1'; the most potent inhibitors comprise P4 to P1'. Inhibitory activities were found against the purified 3C protease of EV68, as well as with replicons for poliovirus and EV71 (50% effective concentration [EC(50)] = 0.5 µM for the best compound). Antiviral activities were determined using cell cultures infected with EV71, poliovirus, echovirus 11, and various rhinovirus serotypes. The most potent inhibitor, SG85, exhibited activity with EC(50)s of ≈180 nM against EV71 and ≈60 nM against human rhinovirus 14 in a live virus-cell-based assay. Even the shorter SG75, spanning only P3 to P1', displayed significant activity (EC(50) = 2 to 5 µM) against various rhinoviruses.


Asunto(s)
Antivirales/farmacología , Drogas de Diseño/farmacología , Picornaviridae/efectos de los fármacos , Picornaviridae/enzimología , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Antivirales/química , Línea Celular , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Drogas de Diseño/química , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Inhibidores de Proteasas/química , Conformación Proteica , Proteínas Virales/química
2.
PLoS Pathog ; 5(5): e1000428, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19436709

RESUMEN

Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core)") of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively) revealed that SUD(core) forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core) as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed.


Asunto(s)
G-Cuádruplex , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Electroforesis , Genoma Viral , Lisina/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas no Estructurales Virales/genética , Replicación Viral
3.
J Mol Biol ; 383(5): 1081-96, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18694760

RESUMEN

Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.


Asunto(s)
Coronavirus/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Sustitución de Aminoácidos/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Cristalografía por Rayos X , Cisteína/metabolismo , ADN/metabolismo , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Glutaral/farmacología , Modelos Moleculares , Proteínas Mutantes/química , Ácidos Nucleicos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Polímeros , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas de Unión al ARN/química , Soluciones , Resonancia por Plasmón de Superficie , Proteínas Virales/química
4.
Chem Biol ; 15(6): 597-606, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18559270

RESUMEN

The main proteinase (M(pro)) of the severe acute respiratory syndrome (SARS) coronavirus is a principal target for the design of anticoronaviral compounds. Benzotriazole esters have been reported as potent nonpeptidic inhibitors of the enzyme, but their exact mechanism of action remains unclear. Here we present crystal structures of SARS-CoV M(pro), the active-site cysteine of which has been acylated by benzotriazole esters that act as suicide inhibitors. In one of the structures, the thioester product has been hydrolyzed and benzoic acid is observed to bind to the hydrophobic S2 pocket. This structure also features the enzyme with a shortened N-terminal segment ("amputated N finger"). The results further the understanding of the important role of the N finger for catalysis as well as the design of benzotriazole inhibitors with improved specificity.


Asunto(s)
Inhibidores de Proteasas/farmacología , Triazoles/farmacología , Proteínas Virales/antagonistas & inhibidores , Catálisis , Proteasas 3C de Coronavirus , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Ésteres , Cinética , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/química , Triazoles/química , Proteínas Virales/química , Proteínas Virales/metabolismo
5.
J Virol ; 82(16): 8085-93, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550673

RESUMEN

Sapovirus is a positive-stranded RNA virus with a translational strategy based on processing of a polyprotein precursor by a chymotrypsin-like protease. So far, the molecular mechanisms regulating cleavage specificity of the viral protease are poorly understood. In this study, the catalytic activities and substrate specificities of the predicted forms of the viral protease, the 3C-like protease (NS6) and the 3CD-like protease-polymerase (NS6-7), were examined in vitro. The purified NS6 and NS6-7 were able to cleave synthetic peptides (15 to 17 residues) displaying the cleavage sites of the sapovirus polyprotein, both NS6 and NS6-7 proteins being active forms of the viral protease. High-performance liquid chromatography and subsequent mass spectrometry analysis of digested products showed a specific trans cleavage of peptides bearing Gln-Gly, Gln-Ala, Glu-Gly, Glu-Pro, or Glu-Lys at the scissile bond. In contrast, peptides bearing Glu-Ala or Gln-Asp at the scissile bond (NS4-NS5 and NS5-NS6, or NS6-NS7 junctions, respectively) were resistant to trans cleavage by NS6 or NS6-7 proteins, whereas cis cleavage of the Glu-Ala scissile bond of the NS5-NS6 junction was evidenced. Interestingly, the presence of a Phe at position P4 overruled the resistance to trans cleavage of the Glu-Ala junction (NS5-NS6), whereas substitutions at the P1 and P2' positions altered the cleavage efficiency. The differential cleavage observed is supported by a model of the substrate-binding site of the sapovirus protease, indicating that the P4, P1, and P2' positions in the substrate modulate the cleavage specificity and efficiency of the sapovirus chymotrypsin-like protease.


Asunto(s)
Quimasas/química , Sapovirus/química , Proteínas no Estructurales Virales/química , Sitios de Unión , Dominio Catalítico , Cromatografía Líquida de Alta Presión/métodos , Quimasas/metabolismo , Espectrometría de Masas/métodos , Modelos Genéticos , Modelos Moleculares , Mutación , Sistemas de Lectura Abierta , Péptidos/química , Proteínas Recombinantes/química , Sapovirus/enzimología , Especificidad por Sustrato
6.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 4): 508-13, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17372356

RESUMEN

Human glutamate carboxypeptidase II (GCPII) occurs in the central nervous system as well as in human prostate (where it is called prostate-specific membrane antigen; PSMA). Inhibitors of the enzyme have been shown to provide neuroprotection, but may also be useful for the detection, imaging and treatment of prostate cancer. Crystal structures were determined of the extracellular part of GCPII (amino-acid residues 44-750) in complex with two potent inhibitors, quisqualate and 2-PMPA (the strongest GCPII inhibitor to date), at resolutions of 3.0 and 2.2 A, respectively. In addition, models were constructed for binding of the inhibitors willardiine, homoibotenate, L-2-amino-4-phosphonobutanoic acid and L-serine-O-sulfate to the S1' site of the enzyme. The common denominator for high-affinity binding to the S1' site is the formation of two strong salt bridges.


Asunto(s)
Inhibidores Enzimáticos/química , Agonistas de Aminoácidos Excitadores/química , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Compuestos Organofosforados/química , Ácido Quiscuálico/química , Antígenos de Superficie/química , Sitios de Unión , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Glutamato Carboxipeptidasa II/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Compuestos Organofosforados/farmacología , Conformación Proteica , Ácido Quiscuálico/farmacología
9.
FEBS Lett ; 580(17): 4143-9, 2006 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-16828088

RESUMEN

The non-structural protein Nsp10 of coronaviruses is a small cleavage product of the viral replicase polyprotein that has been implicated in RNA synthesis. Nsp10 of mouse hepatitis virus (MHV) displays an apparent molecular mass of 13-16kDa in reducing SDS-PAGE and analytical gel filtration, while dynamic light scattering suggests the existence of oligomeric forms. Atomic absorption spectroscopy reveals two metal ions per Nsp10 monomer, with a preference for Zn(2+) over Fe(2+/3+) and Co(2+). These are probably bound by two Zn-finger-like motifs. Moreover, MHV Nsp10 interacts with tRNA, single-stranded RNA, double-stranded DNA and, to a lesser extent, single-stranded DNA as shown by gel-shift experiments. The K(d) for tRNA is 2.1+/-0.2 microM.


Asunto(s)
Virus de la Hepatitis Murina/química , Ácidos Nucleicos/química , Proteínas no Estructurales Virales/química , Zinc/química , Secuencias de Aminoácidos , Virus de la Hepatitis Murina/metabolismo , Ácidos Nucleicos/metabolismo , Unión Proteica , Proteínas no Estructurales Virales/metabolismo , Zinc/metabolismo
10.
EMBO J ; 25(6): 1375-84, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16467855

RESUMEN

Membrane-bound glutamate carboxypeptidase II (GCPII) is a zinc metalloenzyme that catalyzes the hydrolysis of the neurotransmitter N-acetyl-L-aspartyl-L-glutamate (NAAG) to N-acetyl-L-aspartate and L-glutamate (which is itself a neurotransmitter). Potent and selective GCPII inhibitors have been shown to decrease brain glutamate and provide neuroprotection in preclinical models of stroke, amyotrophic lateral sclerosis, and neuropathic pain. Here, we report crystal structures of the extracellular part of GCPII in complex with both potent and weak inhibitors and with glutamate, the product of the enzyme's hydrolysis reaction, at 2.0, 2.4, and 2.2 A resolution, respectively. GCPII folds into three domains: protease-like, apical, and C-terminal. All three participate in substrate binding, with two of them directly involved in C-terminal glutamate recognition. One of the carbohydrate moieties of the enzyme is essential for homodimer formation of GCPII. The three-dimensional structures presented here reveal an induced-fit substrate-binding mode of this key enzyme and provide essential information for the design of GCPII inhibitors useful in the treatment of neuronal diseases and prostate cancer.


Asunto(s)
Glutamato Carboxipeptidasa II/química , Neuronas , Neoplasias de la Próstata/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glicosilación , Humanos , Hidrólisis , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas/enzimología , Neuronas/patología , Neoplasias de la Próstata/patología , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
11.
J Mol Biol ; 354(1): 25-40, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16242152

RESUMEN

The SARS coronavirus main proteinase (M(pro)) is a key enzyme in the processing of the viral polyproteins and thus an attractive target for the discovery of drugs directed against SARS. The enzyme has been shown by X-ray crystallography to undergo significant pH-dependent conformational changes. Here, we assess the conformational flexibility of the M(pro) by analysis of multiple crystal structures (including two new crystal forms) and by molecular dynamics (MD) calculations. The MD simulations take into account the different protonation states of two histidine residues in the substrate-binding site and explain the pH-activity profile of the enzyme. The low enzymatic activity of the M(pro) monomer and the need for dimerization are also discussed.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Sitios de Unión , Simulación por Computador , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Dimerización , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica
12.
Science ; 300(5626): 1763-7, 2003 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12746549

RESUMEN

A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.


Asunto(s)
Antivirales , Coronavirus Humano 229E/enzimología , Cisteína Endopeptidasas/química , Diseño de Fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/metabolismo , Dimerización , Humanos , Isoxazoles/química , Isoxazoles/metabolismo , Isoxazoles/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Fenilalanina/análogos & derivados , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Virus de la Gastroenteritis Transmisible/enzimología , Valina/análogos & derivados
13.
EMBO J ; 21(13): 3213-24, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12093723

RESUMEN

The key enzyme in coronavirus polyprotein processing is the viral main proteinase, M(pro), a protein with extremely low sequence similarity to other viral and cellular proteinases. Here, the crystal structure of the 33.1 kDa transmissible gastroenteritis (corona)virus M(pro) is reported. The structure was refined to 1.96 A resolution and revealed three dimers in the asymmetric unit. The mutual arrangement of the protomers in each of the dimers suggests that M(pro) self-processing occurs in trans. The active site, comprised of Cys144 and His41, is part of a chymotrypsin-like fold that is connected by a 16 residue loop to an extra domain featuring a novel alpha-helical fold. Molecular modelling and mutagenesis data implicate the loop in substrate binding and elucidate S1 and S2 subsites suitable to accommodate the side chains of the P1 glutamine and P2 leucine residues of M(pro) substrates. Interactions involving the N-terminus and the alpha-helical domain stabilize the loop in the orientation required for trans-cleavage activity. The study illustrates that RNA viruses have evolved unprecedented variations of the classical chymotrypsin fold.


Asunto(s)
Cisteína Endopeptidasas/química , Virus de la Gastroenteritis Transmisible/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Quimotripsina/química , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Virus de la Gastroenteritis Transmisible/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA