Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445659

RESUMEN

Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-ß (TGF-ß)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-ß. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-ß-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.


Asunto(s)
Curcumina , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Curcumina/farmacología , Proteómica , Hígado/metabolismo , Fibrosis , Antiinflamatorios
2.
Mater Des ; 192: 108742, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32394995

RESUMEN

Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells. The developed nanoplatform consists of boron nitride nanotubes (BNNTs) loaded with doxorubicin (Dox) and coated with cell membranes (CM) extracted from GBM cells (Dox-CM-BNNTs). We demonstrated as Dox-CM-BNNTs are able to specifically target and kill GBM cells in vitro, leaving unaffected healthy brain cells, upon successful crossing an in vitro blood-brain barrier model. The excellent targeting performances of the nanoplatform can be ascribed to the protein component of the membrane coating, and proteomic analysis of differently expressed membrane proteins present on the CM of GBM cells and of healthy astrocytes allowed the identification of potential candidates involved in the process of homotypic cancer cell recognition.

3.
Nanomedicine (Lond) ; 12(14): 1647-1660, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28635380

RESUMEN

AIM: The spontaneous adsorption of proteins on nanoparticles (NPs) in biological media is exploited to prepare complexes of NPs and proteins from cancer cells' lysates for application in cancer immunotherapy. MATERIALS & METHODS: Gold (Au) and silica NPs were synthesized, incubated with cancer cells' lysates and characterized. Dendritic cells (DCs) were challenged with protein-coated NPs, their maturation, viability and morphology were evaluated and lymphocytes T proliferation was determined. RESULTS: Silica and Au NPs bound different pools of biomolecules from lysates, and are therefore promising selective carriers for antigens. When incubated with immature DCs, NPs were efficiently endocytosed without cytotoxicity. Finally, protein-coated AuNPs promoted DC maturation and DC-mediated lymphocyte proliferation, at variance with lysate alone and protein-coated silica NPs, that did not promote DCs maturation. CONCLUSION: These results demonstrate that the spontaneous formation of protein coronas on NPs represents a possible approach to fast, easy, cost-effective DCs stimulation.


Asunto(s)
Células Dendríticas/inmunología , Inmunoterapia/métodos , Nanopartículas/uso terapéutico , Neoplasias/terapia , Corona de Proteínas , Adsorción , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/uso terapéutico , Oro/química , Humanos , Nanopartículas/química , Neoplasias/inmunología , Corona de Proteínas/química , Corona de Proteínas/inmunología , Dióxido de Silicio/química
4.
Biometals ; 29(5): 863-72, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27476157

RESUMEN

In the last few years gold(III) complexes have attracted growing attention in the medicinal chemistry community as candidate anticancer agents. In particular some organogold(III) compounds manifested quite attractive pharmacological behaviors in preclinical studies. Here we compare the chemical and biological properties of the novel organogold(III) complex [Au(bipy(dmb)-H)(NH(CO)CH3)][PF6] (Aubipy(aa)) with those of its parent compounds [Au(bipy(dmb)-H)(OH)][PF6] (Aubipy(c)) and [Au2(bipy(dmb)-H)2)(µ-O)][PF6]2 (Au2bipy(c)), previously synthesized and characterized. The three study compounds were comparatively assessed for their antiproliferative actions against HCT-116 cancer cells, revealing moderate cytotoxic effects. Proapoptotic and cell cycle effects were also monitored. Afterward, to gain additional mechanistic insight, the three gold compounds were challenged against the model proteins HEWL, RNase A and cytochrome c and reactions investigated through UV-Vis and ESI-MS analysis. A peculiar and roughly invariant protein metalation profile emerges in the three cases consisting of protein binding of {Au(bipy(dmb)-H)} moieties. The implications of these results are discussed in the frame of current knowledge on anticancer gold compounds.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Orgánicos de Oro/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos Orgánicos de Oro/síntesis química , Compuestos Orgánicos de Oro/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
5.
Biometals ; 29(3): 535-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27086032

RESUMEN

The dibromido analogue of cisplatin, cis-PtBr2(NH3)2 (cisPtBr2 hereafter), has been prepared and characterised. Its solution behaviour in standard phosphate buffer, at pH 7.4, was investigated spectrophotometrically and found to reproduce quite closely that of cisplatin; indeed, progressive sequential release of the two halide ligands typically occurs as in the case of cisplatin, with a roughly similar kinetics. Afterward, patterns of reactivity toward model proteins and standard ctDNA were explored and the nature of the resulting interactions elucidated. The antiproliferative properties were then evaluated in four representative cancer cell lines, namely A549 (human lung cancer), HCT116 (human colon cancer), IGROV-1 (human ovarian cancer) and FLG 29.1 (human acute myeloid leukaemia). Cytotoxic properties in line with those of cisplatin were highlighted. From these studies an overall chemical and biological profile emerges for cisPtBr2 closely matching that of cisplatin; the few slight, but meaningful differences that were underscored might be advantageously exploited for clinical application.


Asunto(s)
Antineoplásicos/farmacología , Bromuros/farmacología , Cisplatino/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Bromuros/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Filagrina , Células HCT116 , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
J Inorg Biochem ; 160: 198-209, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26921982

RESUMEN

In the search for novel platinum-based anticancer therapeutic agents, we have recently established a structural motif of (O,S) bidentate ligands bound to a Pt(II) metal center which is effective against various cancer cell lines. Aiming at further enhancing the cytotoxicity of metal-based drugs, the identification of potential biological targets and elucidation of the mode of action of selected lead compounds is of utmost importance. Here we report our studies on the DNA interaction of three representative Pt(II) complexes of the investigated series, using various model systems and analytical techniques. In detail, CD spectroscopy as well as ESI-MS and MS(2) techniques were applied to gain an overall picture of the binding properties of this class of (O,S) bidentate Pt(II) compounds with defined oligonucleotide sequences in single strand, duplex or G-quadruplex form, as well as with the nucleobase 9-methylguanine. On the whole, it was demonstrated that the tested compounds interact with DNA and produce conformational changes of different extents depending on the sequence and structure of the examined oligonucleotide. Guanine was established as the preferential target within the DNA sequence, but in the absence or unavailability of guanines, alternative binding sites can be addressed. The implications of these results are thoroughly discussed.


Asunto(s)
Complejos de Coordinación/síntesis química , G-Cuádruplex , Guanina/análogos & derivados , Oligodesoxirribonucleótidos/química , Compuestos Organoplatinos/química , Platino (Metal)/química , Antineoplásicos/síntesis química , Sitios de Unión , Guanina/química , Ligandos , Modelos Químicos , Compuestos Organoplatinos/síntesis química , Espectrometría de Masa por Ionización de Electrospray
8.
Biometals ; 28(6): 1079-85, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453060

RESUMEN

The so called "copper trafficking system" in mammalian cells is primarily devoted to the regulation of copper transport and homeostasis. This system, now well characterized, consists of a few strictly interconnected proteins that assist copper entrance inside cells and then promote metal transfer and delivery to essential copper-dependent cellular proteins (Boal and Rosenzweig 2009a; Banci et al., Mol Life Sci 67:2563-2589, 2010). Yet, the "copper trafficking system" may also facilitate the entrance inside cells of non-physiological metal species such as clinically established platinum drugs. ESI and MALDI MS methods are exploited here to characterize the interactions occurring between the experimental anticancer organogold(III) drug, Aubipyc, and the copper chaperone Atox1, a key protein of the copper trafficking system. The nature of the adducts that are formed when reacting Aubipyc with Atox1 is elucidated in detail. Characterization of the Aubipyc/Atox1 system is further supported by circular dichroism experiments. Binding competitions with mercury and bismuth ions were also explored. The relevance and the biological implications of the present results are discussed.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/química , Metalochaperonas/química , Compuestos Orgánicos de Oro/química , 2,2'-Dipiridil/química , Transporte Biológico , Bismuto/química , Dicroismo Circular , Cobre/química , Proteínas Transportadoras de Cobre , Humanos , Cinética , Mercurio/química , Chaperonas Moleculares , Unión Proteica , Soluciones , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Termodinámica
9.
Biochim Biophys Acta ; 1853(12): 3211-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26384873

RESUMEN

Fibroblasts are the most abundant cells in connective tissue and, with fibrillar extracellular matrix, form the structural scaffolding of organs. In solid tumors, interaction with cancer cells induces fibroblasts transdifferentiation into an activated form, which become a fundamental part of the tumor stroma. Within tumor microenvironment stromal and cancer cells engage a crosstalk that is mediated by soluble factors, cellcell contacts and extracellular vesicles trafficlking. Here we report that fibroblasts have the ability to transfer a remarkable amount of proteins and lipids to neighboring cells, in an ectosome-dependent fashion, identifying a novel and native property of these cells. Cancer-associated fibroblasts show an enhanced production and delivering of ectc:Jsomes to cancer cells compared to normal fibroblasts. As a consequence of this phenomenon, tumor cells increase their proliferation rate, indicating that ectosome-mediated trafficking could be a relevant mechanism mediating the trophic function of activated connective tissue on tumor cells.


Asunto(s)
Proliferación Celular , Metabolismo de los Lípidos , Neoplasias de la Próstata/patología , Transporte de Proteínas , Línea Celular Tumoral , Técnicas de Cocultivo , Fibroblastos/patología , Humanos , Masculino , Microambiente Tumoral
10.
J Inorg Biochem ; 149: 102-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25865000

RESUMEN

Aurothiomalate (AuTm) is an old, clinically established, antiarthritic gold drug that is currently being reconsidered as a candidate drug for cancer treatment and for other therapeutic indications within a more general drug repositioning program. As the biological effects of gold drugs seem to be mediated, mainly, by their interactions with protein targets we have analyzed here, in detail, the metalation patterns produced by aurothiomalate in a few model proteins. In particular, the reactions of aurothiomalate with the small proteins ribonuclease A, cytochrome c and lysozyme were explored through ESI MS (electrospray ionization mass spectrometry) analysis. Notably, characteristic and rather constant features emerged in the protein metalation patterns induced by AuTm that are markedly distinct from those caused by auranofin; a non-covalent interaction mode is invoked for AuTm binding to the mentioned proteins. The affinity constants of AuTm toward the three mentioned proteins were also initially assessed. The implications of the present findings are discussed.


Asunto(s)
Antineoplásicos/farmacología , Auranofina/farmacología , Citocromos c/metabolismo , Tiomalato Sódico de Oro/farmacología , Muramidasa/metabolismo , Ribonucleasa Pancreática/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/química , Auranofina/química , Sitios de Unión , Citocromos c/química , Tiomalato Sódico de Oro/química , Datos de Secuencia Molecular , Muramidasa/química , Unión Proteica , Ribonucleasa Pancreática/química
11.
Inorg Chem ; 53(15): 7806-8, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25025479

RESUMEN

The adducts formed between trans-(dimethylamino)(methylamino)dichloridoplatinum(II), [t-PtCl2(dma)(ma)], and two model proteins, i.e., hen egg white lysozyme and bovine pancreatic ribonuclease, were independently characterized by X-ray crystallography and electrospray ionization mass spectrometry. In these adducts, the Pt(II) center, upon chloride release, coordinates either to histidine or aspartic acid residues while both alkylamino ligands remain bound to the metal. Comparison with the cisplatin derivatives of the same proteins highlights for [t-PtCl2(dma)(ma)] a kind of biomolecular metalation remarkably different from that of cisplatin.


Asunto(s)
Antineoplásicos/química , Compuestos de Platino/química , Proteínas/química , Animales , Bovinos , Cristalografía por Rayos X , Muramidasa/química , Ribonucleasa Pancreática/química , Espectrometría de Masa por Ionización de Electrospray
12.
Dalton Trans ; 43(8): 3072-86, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24169734

RESUMEN

Cisplatin and its analogues are first-line chemotherapeutic agents for the treatment of numerous human cancers. A major inconvenience in their clinical use is their strong tendency to link to sulfur compounds, especially in kidney, ultimately leading to severe nephrotoxicity. To overcome this drawback we prepared a variety of platinum complexes with sulfur ligands and analyzed their biological profiles. Here, a series of six platinum(II) compounds bearing a conserved O,S binding moiety have been synthesized and characterized as experimental anticancer agents. The six compounds differ in the nature of the O,S bidentate ß-hydroxydithiocinnamic alkyl ester ligand where both the substituents on the aromatic ring and the length of the alkyl chain may be varied. The two remaining coordination positions at the square-planar platinum(II) center are occupied by a chloride ion and a DMSO molecule. These novel platinum compounds showed an acceptable solubility profile in mixed DMSO-buffer solutions and an appreciable stability at physiological pH as judged from analysis of their time-course UV-visible absorption spectra. Their anti-proliferative and pro-apoptotic activities were tested against the cisplatin-resistant lung cancer cell line A549. Assays revealed significant effects of the sample drugs at low concentrations (in the µmolar range); initial structure-activity-relationships are proposed. The activity of the apoptosis-promoting protein caspase 3/7 was determined; results proved that these novel platinum compounds, under the chosen experimental conditions, preferentially induce apoptosis over necrosis. Reactions with the model proteins cytochrome c, lysozyme and albumin were studied by ESI MS and ICP-OES to gain preliminary mechanistic information. The tested compounds turned out to metalate the mentioned proteins to a large extent. In view of the obtained results these novel platinum complexes qualify themselves as promising cytotoxic agents and merit, in our opinion, a deeper pharmacological evaluation as prospective anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Complejos de Coordinación/síntesis química , Platino (Metal)/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/toxicidad , Cristalografía por Rayos X , Citocromos c/química , Citocromos c/metabolismo , Dimetilsulfóxido/química , Humanos , Ligandos , Conformación Molecular , Muramidasa/química , Muramidasa/metabolismo , Oxígeno/química , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Relación Estructura-Actividad , Azufre/química
13.
J Biol Inorg Chem ; 17(8): 1293-302, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23132507

RESUMEN

Protein metalation processes are crucial for the mechanism of action of several anticancer metallodrugs and warrant deeper characterisation. We have explored the reactions of three cytotoxic gold(III) compounds-namely [(bipy(2Me))(2)Au(2)(µ-O)(2)][PF(6)](2) (where bipy(2Me) is 6,6'-dimethyl-2,2'-bipyridine) (Auoxo6), [(phen(2Me))(2)Au(2)(µ-O)(2)][PF(6)](2) (where phen(2Me) is 2,9-dimethyl-1,10-phenanthroline) (Au(2)phen) and [(bipy(dmb)-H)Au(OH)][PF(6)] [where bipy(dmb)-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine] (Aubipyc)-with two representative model proteins, i.e. horse heart cytochrome c and hen egg white lysozyme, through UV-visible absorption spectroscopy and electrospray ionisation mass spectrometry (ESI MS) to characterise the inherent protein metalation processes. Notably, Auoxo6 and Au(2)phen produced stable protein adducts where one or more "naked" gold(I) ions are protein-coordinated; very characteristic is the case of cytochrome c, which upon reaction with Auoxo6 or Au(2)phen preferentially forms "tetragold" adducts with four protein-bound gold(I) ions. In turn, Aubipyc afforded monometalated protein adducts where the structural core of the gold(III) centre and its +3 oxidation state are conserved. Auranofin yielded protein derivatives containing the intact auranofin molecule. Additional studies were performed to assess the role played by a reducing environment in protein metalation. Overall, the approach adopted provides detailed insight into the formation of metallodrug-protein derivatives and permits trends, peculiarities and mechanistic details of the underlying processes to be highlighted. In this respect, electrospray ionisation mass spectrometry is a very straightforward and informative research tool. The protein metalation processes investigated critically depend on the nature of both the metal compound and the interacting protein and also on the solution conditions used; thus, predicting with accuracy the nature and the amounts of the adducts formed for a given metallodrug-protein pair is currently extremely difficult.


Asunto(s)
Antineoplásicos/farmacología , Citocromos c , Compuestos de Oro/farmacología , Muramidasa , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Pollos , Citocromos c/química , Compuestos de Oro/química , Compuestos de Oro/uso terapéutico , Caballos , Muramidasa/química , Unión Proteica/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
14.
Inorg Chem ; 51(3): 1717-26, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22225466

RESUMEN

Six diiodido-diamine platinum(II) complexes, either cis or trans configured, were prepared, differing only in the nature of the amine ligand (isopropylamine, dimethylamine, or methylamine), and their antiproliferative properties were evaluated against a panel of human tumor cell lines. Both series of complexes manifested pronounced cytotoxic effects, with the trans isomers being, generally, more effective than their cis counterparts. Cell cycle analysis revealed different modes of action for these new Pt(II) complexes with respect to cisplatin. The reactivity of these platinum compounds with a number of biomolecules, including cytochrome c, two sulfur containing modified amino acids, 9-ethylguanine, and a single strand oligonucleotide, was analyzed in depth by mass spectrometry and NMR spectroscopy. Interestingly, significant differences in the reactivity of the investigated compounds toward the various model biomolecules were observed: in particular we observed that trans complexes preferentially release their iodide ligands upon biomolecule binding, while the cis isomers may release the amine ligands with retention of iodides. Such differences in reactivity may have important mechanistic implications and a relevant impact on the respective pharmacological profiles.


Asunto(s)
Antineoplásicos/química , Platino (Metal)/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Isomerismo , Espectroscopía de Resonancia Magnética , Platino (Metal)/farmacología , Espectrometría de Masa por Ionización de Electrospray
15.
Metallomics ; 3(10): 987-90, 2011 10.
Artículo en Inglés | MEDLINE | ID: mdl-21947338

RESUMEN

Reactions of cytotoxic platinum drugs with proteins are attracting growing attention for their relevant biological implications. We report here on the reactions of two cis-diphosphane platinum(II) dichlorides (namely cis-bis(trimethylphosphane) platinum(II) dichloride and cis-bis(triethylphosphane) platinum(II) dichloride) with horse heart cytochrome c (cyt c) monitored through advanced ESI MS methods coupled to enzymatic digestion. A remarkable selectivity in terms of adduct stoichiometry is highlighted and the specific metal binding sites are localised on the protein surface.


Asunto(s)
Antineoplásicos/farmacología , Citocromos c/metabolismo , Compuestos de Platino/farmacología , Animales , Antineoplásicos/química , Sitios de Unión , Cloruros/química , Cloruros/farmacología , Citocromos c/química , Caballos , Miocardio/enzimología , Compuestos de Platino/química , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray
16.
J Inorg Biochem ; 105(3): 348-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21421122

RESUMEN

A series of new gold(I) and gold(III) complexes based on the saccharinate (sac) ligand, namely M[Au(sac)(2)] (with M being Na(+), K(+) or NH(4)(+)), [(PTA)Au(sac)], K[Au(sac)(3)Cl] and Na[Au(sac)(4)], were synthesized and characterized, and some aspects of their biological profile investigated. Spectrophotometric analysis revealed that these gold compounds, upon dissolution in aqueous media, at physiological pH, manifest a rather favourable balance between stability and reactivity. Their reactions with the model proteins cytochrome c and lysozyme were monitored by mass spectrometry to predict their likely interactions with protein targets. In the case of disaccharinato gold(I) complexes, cytochrome c adducts bearing four coordinated gold(I) ions were preferentially formed in high yield. In contrast, [(PTA)Au(sac)] (PTA=1,3,5-triaza-7-phosphaadamantane) turned out to be poorly effective, only producing a mono-metalated adduct in very low amount. In turn, the gold(III) saccharinate derivatives were less reactive than their gold(I) analogues: K[Au(sac)(3)Cl] and Na[Au(sac)(4)] caused moderate protein metalation, again with evidence of formation of tetragold adducts. Finally, the above mentioned gold compounds were challenged against the reference human tumor cell line A2780S and its cisplatin resistant subline A2780R and their respective cytotoxic profiles determined. [(PTA)Au(sac)] turned out to be highly cytotoxic whereas moderate cytotoxicities were observed for the gold(III) complexes and only modest activities for disaccharinato gold(I) complexes. The implications of these results are thoroughly discussed in the light of current knowledge on gold based drugs.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Compuestos Orgánicos de Oro/síntesis química , Compuestos Orgánicos de Oro/farmacología , Sacarina/química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/química , Cisplatino/farmacología , Femenino , Humanos , Concentración 50 Inhibidora , Ligandos , Compuestos Orgánicos de Oro/química , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Unión Proteica/efectos de los fármacos , Sacarina/análogos & derivados , Soluciones/química , Relación Estructura-Actividad
17.
Dalton Trans ; 40(9): 2006-16, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21212880

RESUMEN

Twelve Pt(II) complexes with cis-PtP(2)S(2) pharmacophores (where P(2) refers to two monodentate or one bidentate phosphane ligand and S(2) is a dithiolato ligand) were prepared, characterized and evaluated as potential antiproliferative agents. The various compounds were first studied from the structural point of view; afterward, their solubility properties as well as their solution behaviour were analyzed in detail. Antiproliferative properties were specifically evaluated against A2780 human ovarian carcinoma cells, either resistant or sensitive to cisplatin. For comparison purposes similar studies were carried out on four parent cis-dichloro bisphosphane Pt(II)complexes. On the whole, the cis-PtP(2)S(2) compounds displayed significant antiproliferative properties while the cis-PtP(2)Cl(2) (cis-dichloro bisphosphane Pt(II)) compounds revealed quite poor biological performances. To gain further insight into the molecular mechanisms of these bisphosphane Pt(II) compounds, the reactions of selected complexes against the model protein cytochrome c were investigated by ESI-MS and their adduct formation explored. A relevant reactivity with cyt c was obtained only for cis-PtP(2)Cl(2) compounds, whereas cis-PtP(2)S(2) compounds turned out to be nearly unreactive. The obtained results are interpreted and discussed in the frame of the current knowledge of anticancer platinum compounds and their structure-activity-relationships. The observation of appreciable antiproliferative effects for the relatively inert cis-PtP(2)S(2) compounds strongly suggests that these compounds will undergo specific activation within the cellular environment.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Compuestos de Platino/química , Compuestos de Platino/síntesis química , Azufre/química , Línea Celular Tumoral , Cisplatino/química , Cisplatino/toxicidad , Citocromos c/química , Femenino , Humanos , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/toxicidad , Neoplasias Ováricas/tratamiento farmacológico , Fosfinas/química , Fósforo/química , Unión Proteica , Espectrofotometría Ultravioleta/métodos , Relación Estructura-Actividad
18.
ACS Med Chem Lett ; 1(7): 336-9, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24900215

RESUMEN

A novel dioxo-bridged dinuclear gold(III) complex with two 2,9-dimethylphenanthroline ligands was synthesized and thoroughly characterized. Its crystal structure was solved, and its solution behavior assessed. Remarkably, this compound revealed excellent antiproliferative properties in vitro against a wide panel of 36 cancer cell lines, combining a high cytotoxic potency to pronounced tumor selectivity. Very likely, these properties arise from an innovative mode of action (possibly involving histone deacetylase inhibition), as suggested by COMPARE analysis. In turn, electrospray ionization-mass spectrometry studies provided valuable insight into its molecular mechanisms of activation and of interaction with protein targets. Gold(III) reduction, dioxo bridge disruption, coordinative gold(I) binding to the protein, and concomitant release of the phenanthroline ligand were proposed to occur upon interaction with superoxide dismutase, used here as a model protein. Because of the reported results, this new gold(III) compound qualifies itself as an optimal candidate for further pharmacological testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA