Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Science ; 367(6475)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31949053

RESUMEN

Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam-milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum-associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.


Asunto(s)
Células/ultraestructura , Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Animales , Células COS , Adhesión Celular , Línea Celular Tumoral , Chlorocebus aethiops , Congelación , Células HeLa , Humanos , Ratones
2.
Cell ; 175(5): 1430-1442.e17, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454650

RESUMEN

In eukaryotic cells, organelles and the cytoskeleton undergo highly dynamic yet organized interactions capable of orchestrating complex cellular functions. Visualizing these interactions requires noninvasive, long-duration imaging of the intracellular environment at high spatiotemporal resolution and low background. To achieve these normally opposing goals, we developed grazing incidence structured illumination microscopy (GI-SIM) that is capable of imaging dynamic events near the basal cell cortex at 97-nm resolution and 266 frames/s over thousands of time points. We employed multi-color GI-SIM to characterize the fast dynamic interactions of diverse organelles and the cytoskeleton, shedding new light on the complex behaviors of these structures. Precise measurements of microtubule growth or shrinkage events helped distinguish among models of microtubule dynamic instability. Analysis of endoplasmic reticulum (ER) interactions with other organelles or microtubules uncovered new ER remodeling mechanisms, such as hitchhiking of the ER on motile organelles. Finally, ER-mitochondria contact sites were found to promote both mitochondrial fission and fusion.


Asunto(s)
Retículo Endoplásmico/metabolismo , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopía Fluorescente
3.
Science ; 360(6386)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674564

RESUMEN

True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía/métodos , Animales , Movimiento Celular , Endocitosis , Ojo/ultraestructura , Humanos , Mitosis , Orgánulos , Análisis de la Célula Individual , Pez Cebra
4.
Nat Methods ; 13(4): 359-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950745

RESUMEN

Extending three-dimensional (3D) single-molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, because of the limitations of both conventional imaging modalities and conventional labeling techniques, it is a challenge to localize molecules in three dimensions with high precision in such samples while simultaneously achieving the labeling densities required for high resolution of densely crowded structures. Here we combined lattice light-sheet microscopy with newly developed, freely diffusing, cell-permeable chemical probes with targeted affinity for DNA, intracellular membranes or the plasma membrane. We used this combination to perform high-localization precision, ultrahigh-labeling density, multicolor localization microscopy in samples up to 20 µm thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein-specific photoactivable fluorophores, providing a mutually compatible, single-platform alternative to correlative light-electron microscopy over large volumes.


Asunto(s)
Membrana Celular/ultraestructura , Embrión no Mamífero/ultraestructura , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Animales , Células COS , Chlorocebus aethiops , Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Células LLC-PK1 , Porcinos , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA