Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2309902121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483988

RESUMEN

FBXW7 is an E3 ubiquitin ligase that targets proteins for proteasome-mediated degradation and is mutated in various cancer types. Here, we use CRISPR base editors to introduce different FBXW7 hotspot mutations in human colon organoids. Functionally, FBXW7 mutation reduces EGF dependency of organoid growth by ~10,000-fold. Combined transcriptomic and proteomic analyses revealed increased EGFR protein stability in FBXW7 mutants. Two distinct phosphodegron motifs reside in the cytoplasmic tail of EGFR. Mutations in these phosphodegron motifs occur in human cancer. CRISPR-mediated disruption of the phosphodegron motif at T693 reduced EGFR degradation and EGF growth factor dependency. FBXW7 mutant organoids showed reduced sensitivity to EGFR-MAPK inhibitors. These observations were further strengthened in CRC-derived organoid lines and validated in a cohort of patients treated with panitumumab. Our data imply that FBXW7 mutations reduce EGF dependency by disabling EGFR turnover.


Asunto(s)
Proteínas F-Box , Neoplasias , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Proteómica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas F-Box/genética
2.
Nat Immunol ; 25(1): 88-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012415

RESUMEN

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Perfilación de la Expresión Génica
3.
Med ; 4(5): 290-310.e12, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37178682

RESUMEN

BACKGROUND: Organoids are in vitro three-dimensional structures that can be grown from patient tissue. Head and neck cancer (HNC) is a collective term used for multiple tumor types including squamous cell carcinomas and salivary gland adenocarcinomas. METHODS: Organoids were established from HNC patient tumor tissue and characterized using immunohistochemistry and DNA sequencing. Organoids were exposed to chemo- and radiotherapy and a panel of targeted agents. Organoid response was correlated with patient clinical response. CRISPR-Cas9-based gene editing of organoids was applied for biomarker validation. FINDINGS: A HNC biobank consisting of 110 models, including 65 tumor models, was generated. Organoids retained DNA alterations found in HNC. Comparison of organoid and patient response to radiotherapy (primary [n = 6] and adjuvant [n = 15]) indicated potential for guiding treatment options in the adjuvant setting. In organoids, the radio-sensitizing potential of cisplatin and carboplatin could be validated. However, cetuximab conveyed radioprotection in most models. HNC-targeted treatments were tested on 31 models, indicating possible novel treatment options with the potential for treatment stratification in the future. Activating PIK3CA mutations did not predict alpelisib response in organoids. Protein arginine methyltransferase 5 (PRMT5) inhibitors were identified as a potential treatment option for cyclin-dependent kinase inhibitor 2A (CDKN2A) null HNC. CONCLUSIONS: Organoids hold potential as a diagnostic tool in personalized medicine for HNC. In vitro organoid response to radiotherapy (RT) showed a trend that mimics clinical response, indicating the predictive potential of patient-derived organoids. Moreover, organoids could be used for biomarker discovery and validation. FUNDING: This work was funded by Oncode PoC 2018-P0003.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Biomarcadores/metabolismo , Organoides/metabolismo , Organoides/patología , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35879361

RESUMEN

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia/métodos , Organoides/patología
5.
Stem Cell Reports ; 17(9): 1959-1975, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35985334

RESUMEN

In vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.


Asunto(s)
Antineoplásicos , Organoides , Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Microfluídica , Medicina de Precisión
7.
Ann Surg Oncol ; 29(12): 7911-7920, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35794366

RESUMEN

BACKGROUND: Pre-clinical studies indicate that dry-cold-carbon-dioxide (DC-CO2) insufflation leads to more peritoneal damage, inflammation and hypothermia compared with humidified-warm-CO2 (HW-CO2). Peritoneum and core temperature in patients undergoing colorectal cancer (CRC) surgery were compared. METHODS: Sixty-six patients were randomized into laparoscopic groups; those insufflated with DC-CO2 or HW-CO2. A separate group of nineteen patients undergoing laparotomy were randomised to conventional surgery or with the insertion of a device delivering HW-CO2. Temperatures were monitored and peritoneal biopsies and bloods were taken at the start of surgery, at 1 and 3 h. Further bloods were taken depending upon hospital length-of-stay (LOS). Peritoneal samples were subjected to scanning electron microscopy to evaluate mesothelial damage. RESULTS: Laparoscopic cases experienced a temperature drop despite Bair-HuggerTM use. HW-CO2 restored normothermia (≥ 36.5 °C) by 3 h, DC-CO2 did not. LOS was shorter for colon compared with rectal cancer cases and if insufflated with HW-CO2 compared with DC-CO2; 5.0 vs 7.2 days, colon and 11.6 vs 15.4 days rectum, respectively. Unexpectedly, one third of patients had pre-existing damage. Damage increased at 1 and 3 h to a greater extent in the DC-CO2 compared with the HW-CO2 laparoscopic cohort. C-reactive protein levels were higher in open than laparoscopic cases and lower in both matched HW-CO2 groups. CONCLUSIONS: This prospective RCT is in accord with animal studies while highlighting pre-existing damage in some patients. Peritoneal mesothelium protection, reduced inflammation and restoration of core-body temperature data suggest benefit with the use of HW-CO2 in patients undergoing CRC surgery.


Asunto(s)
Neoplasias Colorrectales , Insuflación , Laparoscopía , Animales , Proteína C-Reactiva , Carbono/farmacología , Dióxido de Carbono/farmacología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Humedad , Inflamación/etiología , Inflamación/patología , Peritoneo/cirugía , Estudios Prospectivos
8.
Cell Stem Cell ; 29(6): 905-917.e6, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35508177

RESUMEN

Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.


Asunto(s)
Neoplasias del Colon , Medicina de Precisión , Neoplasias del Colon/patología , Humanos , Inmunoterapia , Organoides/patología
9.
Cell Death Dis ; 12(11): 959, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663790

RESUMEN

Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.


Asunto(s)
Neoplasias del Ano/genética , Neoplasias del Ano/patología , Genómica , Animales , Neoplasias del Ano/terapia , Neoplasias del Ano/ultraestructura , Antígeno B7-H1/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/ultraestructura , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN/genética , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Dosificación de Gen , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Mitomicina/farmacología , Mitomicina/uso terapéutico , Mutación/genética , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nat Commun ; 12(1): 4746, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362900

RESUMEN

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Asunto(s)
Inmunidad Celular , Células Asesinas Naturales/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Neoplasias/inmunología , Animales , Antineoplásicos , Línea Celular Tumoral , Citocinas , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Metástasis de la Neoplasia , Neoplasias/patología
11.
J Vis Exp ; (170)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33999032

RESUMEN

Patient-derived organoid (PDO) models allow for long-term expansion and maintenance of primary epithelial cells grown in three dimensions and a near-native state. When derived from resected or biopsied tumor tissue, organoids closely recapitulate in vivo tumor morphology and can be used to study therapy response in vitro. Biobanks of tumor organoids reflect the vast variety of clinical tumors and patients and therefore hold great promise for preclinical and clinical applications. This paper presents a method for medium-throughput drug screening using head and neck squamous cell carcinoma and colorectal adenocarcinoma organoids. This approach can easily be adopted for use with any tissue-derived organoid model, both normal and diseased. Methods are described for in vitro exposure of organoids to chemo- and radiotherapy (either as single-treatment modality or in combination). Cell survival after 5 days of drug exposure is assessed by measuring adenosine triphosphate (ATP) levels. Drug sensitivity is measured by the half-maximal inhibitory concentration (IC50), area under the curve (AUC), and growth rate (GR) metrics. These parameters can provide insight into whether an organoid culture is deemed sensitive or resistant to a particular treatment.


Asunto(s)
Adenocarcinoma , Antineoplásicos/farmacología , Neoplasias Colorrectales , Evaluación Preclínica de Medicamentos/métodos , Neoplasias de Cabeza y Cuello , Organoides/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/radioterapia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/radioterapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Técnicas de Cultivo de Órganos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia
12.
Clin Transl Immunology ; 9(7): e1155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32953115

RESUMEN

OBJECTIVES: Tumor-infiltrating lymphocytes (TIL), particularly CD8+ TILs in patients with colorectal cancer (CRC), are highly prognostic in the early-disease stages (I-II). In metastatic disease (stage IV; mCRC), their influence is less well defined. It has presumably failed to contain tumor cells to the primary site; however, is this evident? We explored the prognostic impact of TILs at the primary site in patients who presented de novo with mCRC. METHODS: Treatment-naïve patients (109) with mCRC were assessed for CD8+ TILs and PD-L1 expression. Microsatellite instability (MSI) was evaluated by IHC for PMS2 and MSH6 proteins and/or by PCR using the Bethesda panel. RESULTS: Microsatellite instability-high tumors had significantly more CD8+ TILs, with no significant survival advantage observed between MSI-H and microsatellite stable (MSS) tumors (12 vs 19 months, P = 0.304). TIL density for all cases had no impact on OS (low: 20 vs high: 13 months, P = 0.426), while PD-L1 of 1% or higher was associated with reduced mean survival (9.6 vs 18.9 months; P = 0.038). MSI-H tumors and associated immune cells had higher PD-L1 expression than in MSS cases. A positive correlation between PD-L1 on immune cells and CD8+ve TILs was found. A subset of MSS tumors had relatively high TILs approximating that of MSI-H tumors. CONCLUSION: In contrast to early-stage CRC, the immune response in primary tumors of patients with de novo mCRC does not appear to influence survival. A subgroup of MSS tumors was identified with increased TILs/PD-L1 comparable to MSI-H tumors, traditionally not be considered for immune checkpoint blockade and perhaps should be.

13.
JCO Precis Oncol ; 2: 1-15, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35135158

RESUMEN

PURPOSE: The presence of tumor-infiltrating lymphocytes (TILs) in tumors is superior to conventional pathologic staging in predicting patient outcome. However, their presence does not define TIL functionality. Here we developed an assay that tests TIL cytotoxicity in patients with locally advanced rectal cancer before definitive treatment, identifying those who will obtain a pathologic complete response (pCR). We also used the assay to demonstrate the rescue of TIL function after checkpoint inhibition blockade (CIB). PATIENTS AND METHODS: Thirty-four consecutive patients were identified initially, with successful completion of the assay before surgery in those 17 patients who underwent full treatment. An in vitro cytotoxic assay of rectal cancer tumoroids cocultured with patient-matched TILs was established and validated. Newly diagnosed patients were recruited with pretreatment biopsy specimens processed within 1 month. Evaluation of TIL-mediated tumoroid lysis was performed by measuring the mean fluorescence intensity of cell death marker, propidium iodide. CIB (anti-programmed cell death protein 1 [anti-PD-1] antibody) response was also assessed in a subset of patient specimens. RESULTS: Six of the 17 patients achieved an objective pCR on final evaluation of the resected specimen after neoadjuvant chemoradiotherapy. Cytotoxic killing identified the pCR group with a higher mean fluorescence intensity (27,982 [95% CI, 25,340 to 30,625]) compared with the non-pCR cohort (12,428 [95% CI, 9,434 to 15,423]; p < .001). Assessment of the effectiveness of CIB revealed partial restoration of cytotoxicity in TILs with increased PD-1 expression with anti-PD-1 antibody exposure. CONCLUSION: Evaluating TIL function can be undertaken within weeks of the diagnostic biopsy, affording the potential to alter patient management decisions and refine selection for a watch-and-wait protocol. This cytotoxic assay also has the potential to serve as a platform to assist in the additional development of CIB.

14.
Can J Anaesth ; 64(5): 497-505, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28092065

RESUMEN

PURPOSE: During cancer surgery, prostaglandin-mediated inflammation may promote and activate micrometastatic disease with a consequent increase in long-term cancer recurrence. Cyclooxygenase-2 inhibitors, known to have anti-proliferative properties, may offset such perioperative perturbation. We investigated the effectiveness of these agents to minimize inflammatory changes during cancer surgery. METHODS: Following ethics approval, 32 patients who were to undergo major intracavity cancer surgery were enrolled in this prospective, randomized, clinical trial. The treatment group received 400 mg celecoxib preoperatively followed by five 200 mg 12-hourly doses. The control group received no anti-inflammatory agents. Inflammatory and immunomodulatory end points were measured serially. The primary end points were the measured plasma and urinary prostaglandin E metabolite (PGEM) levels 48 hours following surgery. Secondary endpoints included interleukin levels, leucocyte profile, and clinical end points. RESULTS: No differences in the 48-hr plasma or urinary PGEM levels were observed between the celecoxib and control groups. Linear mixed modeling, used to accommodate differences in baseline PGEM levels, showed that celecoxib (cf. control) administration lowered plasma PGEM over the entire 48-hr period following surgery (ß-coefficient = -0.38 pg.ml-1; 95% confidence interval: -0.69 to -0.06; P = 0.021). Celecoxib administration also lowered postoperative pain scores. DISCUSSION: Standard dosing of the cyclooxygenase-2 inhibitor celecoxib slightly reduced perioperative cyclooxygenase activity during cancer surgery. Given cyclooxygenase's role in cancer pathways, we recommend dose-finding studies be undertaken before prospective clinical trials are conducted testing the currently unsubstantiated hypothesis that perioperative anti-inflammatory administration improves long-term cancer outcomes. This trial was registered at: Australian New Zealand Clinical Trial Registry: ACTRN12615000041550; www.anzctr.org.au.


Asunto(s)
Celecoxib/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inflamación/tratamiento farmacológico , Neoplasias/cirugía , Anciano , Celecoxib/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Femenino , Estudios de Seguimiento , Humanos , Inflamación/etiología , Masculino , Persona de Mediana Edad , Dolor Postoperatorio/prevención & control , Estudios Prospectivos , Sustancia P/metabolismo
15.
Oncoimmunology ; 5(7): e1149667, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27622014

RESUMEN

The presence of tumor immune infiltrating cells (TILs), particularly CD8(+) T-cells, is a robust predictor of outcome in patients with colorectal cancer (CRC). We revisited TIL abundance specifically in patients with microsatellite stable (MSS) CRC without evidence of lymph node or metastatic spread. Examination of the density of CD8(+) T-cells in primary tumors in the context of other pro-oncogenic markers was performed to investigate potential regulators of TILs. Two independent cohorts of patients with MSS T2-4N0M0 CRC, enriched for cases with atypical relapse, were investigated. We quantified CD8(+) and CD45RO(+) -TILs, inflammatory markers, NFkBp65, pStat3, Cyclo-oxygenase-2 (COX2) and GRP78 as well as transcription factors (TF), ß-catenin and MYB. High CD8(+) TILs correlated with a better relapse-free survival in both cohorts (p = 0.002) with MYB and its target gene, GRP78 being higher in the relapse group (p = 0.001); no difference in pSTAT3 and p65 was observed. A mouse CRC (CT26) model was employed to evaluate the effect of MYB on GRP78 expression as well as T-cell infiltration. MYB over-expressing in CT26 cells increased GRP78 expression and the analysis of tumor-draining lymph nodes adjacent to tumors showed reduced T-cell activation. Furthermore, MYB over-expression reduced the efficacy of anti-PD-1 to modulate CT26 tumor growth. This high MYB and GRP78 show a reciprocal relationship with CD8(+) TILs which may be useful refining the prediction of patient outcome. These data reveal a new immunomodulatory function for MYB suggesting a basis for further development of anti-GRP78 and/or anti-MYB therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA