Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.006
Filtrar
Más filtros











Intervalo de año de publicación
1.
Breast Cancer Res Treat ; 205(2): 323-332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433127

RESUMEN

PURPOSE: Female breast cancer (BC) is the leading cause of cancer incidence and mortality in India, and accounted for 13.5% of new cancer cases and 10% of cancer-related deaths in 2020. This study aims to estimate and report the female BC burden in India at state level from 2012 to 2016 in terms of years of life lost, years lived with disability, and disability-adjusted life years (DALYs), and to project the burden for the year 2025. METHODS: The cancer incidence and mortality data from 28 population-based cancer registries were analysed. The mean mortality to incidence ratio was estimated, and mortality figures were adjusted for underreporting. The burden of female BC was estimated at national and subnational levels using Census data, World Health Organisation's lifetables, disability weights, and the DisMod-II tool. A negative binomial regression is employed to project burden for 2025. RESULTS: The burden of BC among Indian women in 2016 was estimated to be 515.4 DALYs per 100,000 women after age standardization. The burden metrics at state level exhibited substantial heterogeneity. Notably, Tamil Nadu, Telangana, Karnataka, and Delhi had a higher burden of BC than states in the eastern and north-eastern regions. The projection for 2025 indicates to a substantial increase, reaching 5.6 million DALYs. CONCLUSION: The female BC burden in India was significantly high in 2016 and is expected to substantially increase. Undertaking a multidisciplinary, context-specific approach for its prevention and control can address this rising burden.


Asunto(s)
Neoplasias de la Mama , Costo de Enfermedad , Sistema de Registros , Humanos , Femenino , India/epidemiología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/mortalidad , Persona de Mediana Edad , Incidencia , Adulto , Anciano , Años de Vida Ajustados por Discapacidad , Años de Vida Ajustados por Calidad de Vida , Adulto Joven , Anciano de 80 o más Años
2.
Radiol Cardiothorac Imaging ; 5(3): e220096, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37404786

RESUMEN

Purpose: To assess the effect of lung volume on measured values and repeatability of xenon 129 (129Xe) gas uptake metrics in healthy volunteers and participants with chronic obstructive pulmonary disease (COPD). Materials and Methods: This Health Insurance Portability and Accountability Act-compliant prospective study included data (March 2014-December 2015) from 49 participants (19 with COPD [mean age, 67 years ± 9 (SD)]; nine women]; 25 older healthy volunteers [mean age, 59 years ± 10; 20 women]; and five young healthy women [mean age, 23 years ± 3]). Thirty-two participants underwent repeated 129Xe and same-breath-hold proton MRI at residual volume plus one-third forced vital capacity (RV+FVC/3), with 29 also undergoing one examination at total lung capacity (TLC). The remaining 17 participants underwent imaging at TLC, RV+FVC/3, and residual volume (RV). Signal ratios between membrane, red blood cell (RBC), and gas-phase compartments were calculated using hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (ie, IDEAL). Repeatability was assessed using coefficient of variation and intraclass correlation coefficient, and volume relationships were assessed using Spearman correlation and Wilcoxon rank sum tests. Results: Gas uptake metrics were repeatable at RV+FVC/3 (intraclass correlation coefficient = 0.88 for membrane/gas; 0.71 for RBC/gas, and 0.88 for RBC/membrane). Relative ratio changes were highly correlated with relative volume changes for membrane/gas (r = -0.97) and RBC/gas (r = -0.93). Membrane/gas and RBC/gas measured at RV+FVC/3 were significantly lower in the COPD group than the corresponding healthy group (P ≤ .001). However, these differences lessened upon correction for individual volume differences (P = .23 for membrane/gas; P = .09 for RBC/gas). Conclusion: Dissolved-phase 129Xe MRI-derived gas uptake metrics were repeatable but highly dependent on lung volume during measurement.Keywords: Blood-Air Barrier, MRI, Chronic Obstructive Pulmonary Disease, Pulmonary Gas Exchange, Xenon Supplemental material is available for this article © RSNA, 2023.

3.
Arterioscler Thromb Vasc Biol ; 43(6): 958-970, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078284

RESUMEN

BACKGROUND: Cerebral cavernous malformations, also known as cavernous angiomas, are blood vessel abnormalities comprised of clusters of grossly enlarged and hemorrhage-prone capillaries. The prevalence in the general population, including asymptomatic cases, is estimated to be 0.5%. Some patients develop severe symptoms, including seizures and focal neurological deficits, whereas others remain asymptomatic. The causes of this remarkable presentation heterogeneity within a primarily monogenic disease remain poorly understood. METHODS: We established a chronic mouse model of cerebral cavernous malformations, induced by postnatal ablation of Krit1 with Pdgfb-CreERT2, and examined lesion progression in these mice with T2-weighted 7T magnetic resonance imaging (MRI). We also established a modified protocol for dynamic contrast-enhanced MRI and produced quantitative maps of gadolinium tracer gadobenate dimeglumine. After terminal imaging, brain slices were stained with antibodies against microglia, astrocytes, and endothelial cells. RESULTS: These mice develop cerebral cavernous malformations lesions gradually over 4 to 5 months of age throughout the brain. Precise volumetric analysis of individual lesions revealed nonmonotonous behavior, with some lesions temporarily growing smaller. However, the cumulative lesional volume invariably increased over time and after about 2 months followed a power trend. Using dynamic contrast-enhanced MRI, we produced quantitative maps of gadolinium in the lesions, indicating a high degree of heterogeneity in lesional permeability. MRI properties of the lesions were correlated with cellular markers for endothelial cells, astrocytes, and microglia. Multivariate comparisons of MRI properties of the lesions with cellular markers for endothelial and glial cells revealed that increased cell density surrounding lesions correlates with stability, whereas denser vasculature within and surrounding the lesions may correlate with high permeability. CONCLUSIONS: Our results lay a foundation for better understanding individual lesion properties and provide a comprehensive preclinical platform for testing new drug and gene therapies for controlling cerebral cavernous malformations.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Ratones , Animales , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Gadolinio , Células Endoteliales/patología , Encéfalo/patología , Imagen por Resonancia Magnética
4.
Magn Reson Med ; 89(6): 2255-2263, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669874

RESUMEN

PURPOSE: To develop and test compressed sensing-based multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung. THEORY AND METHODS: Applying grid-tagging RF pulses to inhaled hyperpolarized gas results in images in which signal intensity is predictably and sparsely distributed. In the present work, this phenomenon was used to produce a sampling pattern in which k-space is undersampled by a factor of approximately seven, yet regions of high k-space energy remain densely sampled. Three healthy subjects received multiframe 3D 3 He tagging MRI using this undersampling method. Images were collected during a single exhalation at eight timepoints spanning the breathing cycle from end-of-inhalation to end-of-exhalation. Grid-tagged images were used to generate 3D displacement maps of the lung during exhalation, and time-resolved maps of principal strains and fractional volume change were generated from these displacement maps using finite-element analysis. RESULTS: Tags remained clearly resolvable for 4-6 timepoints (5-8 s) in each subject. Displacement maps revealed noteworthy temporal and spatial nonlinearities in lung motion during exhalation. Compressive normal strains occurred along all three principal directions but were primarily oriented in the head-foot direction. Fractional volume changes displayed clear bilateral symmetry, but with the lower lobes displaying slightly higher change than the upper lobes in 2 of the 3 subjects. CONCLUSION: We developed a compressed sensing-based method for multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung during exhalation. This method successfully overcomes previous challenges for 3D dynamic grid-tagging, allowing time-resolved biomechanical readouts of lung function to be generated.


Asunto(s)
Compresión de Datos , Pulmón , Masculino , Humanos , Pulmón/diagnóstico por imagen , Respiración , Imagen por Resonancia Magnética/métodos
6.
Sci Rep ; 12(1): 13407, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927449

RESUMEN

Transcranial focused ultrasound with the InSightec Exablate system uses thermal ablation for the treatment of movement and mood disorders and blood brain barrier disruption for tumor therapy. The system uses computed tomography (CT) images to calculate phase corrections that account for aberrations caused by the human skull. This work investigates whether magnetic resonance (MR) images can be used as an alternative to CT images to calculate phase corrections. Phase corrections were calculated using the gold standard hydrophone method and the standard of care InSightec ray tracing method. MR binary image mask, MR-simulated-CT (MRsimCT), and CT images of three ex vivo human skulls were supplied as inputs to the InSightec ray tracing method. The degassed ex vivo human skulls were sonicated with a 670 kHz hemispherical phased array transducer (InSightec Exablate 4000). 3D raster scans of the beam profiles were acquired using a hydrophone mounted on a 3-axis positioner system. Focal spots were evaluated using six metrics: pressure at the target, peak pressure, intensity at the target, peak intensity, positioning error, and focal spot volume. Targets at the geometric focus and 5 mm lateral to the geometric focus were investigated. There was no statistical difference between any of the metrics at either target using either MRsimCT or CT for phase aberration correction. As opposed to the MRsimCT, the use of CT images for aberration correction requires registration to the treatment day MR images; CT misregistration within a range of ± 2 degrees of rotation error along three dimensions was shown to reduce focal spot intensity by up to 9.4%. MRsimCT images used for phase aberration correction for the skull produce similar results as CT-based correction, while avoiding both CT to MR registration errors and unnecessary patient exposure to ionizing radiation.


Asunto(s)
Cráneo , Tomografía Computarizada por Rayos X , Cabeza , Humanos , Imagen por Resonancia Magnética/métodos , Cráneo/diagnóstico por imagen , Cráneo/patología , Tomografía Computarizada por Rayos X/métodos
7.
Auton Neurosci ; 238: 102945, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35176639

RESUMEN

Exercise elicits acute increases in cerebral blood flow velocity (CBFv) and provokes long-term beneficial effects on CBFv, thereby reducing cerebrovascular risk. Acute exposure to a cold stimulus also increases CBFv. We compared the impact of exercise training in cold and thermoneutral environments on CFBv, cerebrovascular function and peripheral endothelial function. Twenty-one (16 males, 22 ± 5 years) individuals were randomly allocated to either a cold (5 °C) or thermoneutral (15 °C) exercise intervention. Exercise consisted of 50-min cycling at 70% heart rate max, three times per week for eight weeks. Transcranial Doppler was used to determine pre and post intervention CBFv, dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity (CVRCO2). Conduit endothelial function, microvascular function and cardiorespiratory fitness were also assessed. Cardiorespiratory fitness improved (2.91 ml.min.kg-1, 95%CI 0.49, 5.3; P = 0.02), regardless of exercise setting. Neither intervention had an impact on CBFv, CVRCO2, FMD or microvascular function (P > 0.05). There was a significant interaction between time and condition for dCA normalised gain with evidence of a decrease by 0.192%cm.s-1.%mmHg-1 (95%CI -0.318, -0.065) following training in the cold and increase (0.129%cm.s-1.%mmHg-1, 95%CI 0.011, 0.248) following training in the thermoneutral environment (P = 0.001). This was also evident for dCA phase with evidence of an increase by 0.072 rad (95%CI -0.007, 0.152) following training in the cold and decrease by 0.065 (95%CI -0.144, 0.014) radians following training in the thermoneutral environment (P = 0.02). Both training interventions improved fitness but CBFv, CVRCO2 and peripheral endothelial function were unaltered. Exercise training in the cold improved dCA whereas thermoneutral negated dCA.

8.
Clin Radiol ; 77(4): 291-298, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177228

RESUMEN

AIM: To prospectively analyse patients undergoing magnetic seed (Magseed) localisation (MSL) to evaluate the outcome, and to retrospectively compare re-excision rates for MSL with previous wire-guided localisation (WGL) to assess the hypothesis that the introduction of MSL may lead to a lower re-excision rate. MATERIALS AND METHODS: MSL commenced at University Hospital Crosshouse in December 2017. No other changes were made to radiological or surgical practice during this time. Data were collected prospectively on all patients undergoing MSL between December 2017 and December 2019, in a single breast unit. Data were gathered retrospectively on patients who had undergone localised breast procedures between January 2016 and December 2019 for comparison of re-excision rates. RESULTS: Two hundred and fifty-five patients underwent MSL surgery between December 2017 and December 2019. Of those, 98% (n=250) patients underwent successful MSL at the first attempt. The Magseed was identified intraoperatively in 100% patients and surgical excision was performed. The re-excision rate reduced from 18.9% in 2016/2017, to 11.6% in 2018/2019 (p=0.098). CONCLUSION: In conclusion, Magseed localisation has proved to be a safe and effective way of localising breast lesions, with the advantage of high accuracy. The reduction in re-excision rates at University Hospital Crosshouse with the introduction of Magseed® localisation is a potential benefit, which requires further study.


Asunto(s)
Procedimientos de Cirugía Plástica , Radiología , Hospitales Universitarios , Humanos , Estudios Retrospectivos
9.
J Neurooncol ; 156(1): 109-122, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34734364

RESUMEN

PURPOSE: Glioblastoma (GB) poses formidable challenges to systemic immunotherapy approaches owing to the paucity of immune infiltration and presence of the blood brain/tumor barriers (BBB/BTB). We hypothesize that BBB/BTB disruption (BBB/BTB-D) with focused ultrasound (FUS) and microbubbles (MB) increases immune infiltration in GB. As a prelude to rational combination of FUS with ITx, we herein investigate the impact of localized BBB/BTB-D on innate and adaptive immune responses in an orthotopic murine GB model. METHODS: Mice with GL261 gliomas received i.v. MB and underwent FUS BBB/BTB-D (1.1 MHz, 0.5 Hz pulse repetition frequency, 10 ms bursts, 0.4-0.6 MPa). Brains, meninges, and peripheral lymphoid organs were excised and examined by flow cytometry 1-2 weeks following FUS. RESULTS: The number of dendritic cells (DC) was significantly elevated in GL261 tumors and draining cervical LN in response to sonication. CD86 + DC frequency was also upregulated with 0.6 MPa FUS, suggesting increased maturity. While FUS did not significantly alter CD8 + T cell frequency across evaluated organs, these cells upregulated checkpoint molecules at 1 week post-FUS, suggesting increased activation. By 2 weeks post-FUS, we noted emergence of adaptive resistance mechanisms, including upregulation of TIGIT on CD4 + T cells and CD155 on non-immune tumor and stromal cells. CONCLUSIONS: FUS BBB/BTB-D exerts mild, transient inflammatory effects in gliomas-suggesting that its combination with adjunct therapeutic strategies targeting adaptive resistance may improve outcomes. The potential for FUS-mediated BBB/BTB-D to modify immunological signatures is a timely and important consideration for ongoing clinical trials investigating this regimen in GB.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Terapia por Ultrasonido , Animales , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/terapia , Imagen por Resonancia Magnética/métodos , Ratones
10.
Magn Reson Med ; 86(6): 2966-2986, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478584

RESUMEN

Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.


Asunto(s)
Pulmón , Isótopos de Xenón , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto , Ventilación Pulmonar , Respiración
11.
Magn Reson Med ; 86(5): 2822-2836, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34227163

RESUMEN

PURPOSE: To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. METHODS: Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. RESULTS: Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network. CONCLUSIONS: Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.


Asunto(s)
Semántica , Isótopos de Xenón , Algoritmos , Ecosistema , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
12.
J Control Release ; 331: 19-29, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33476735

RESUMEN

Phagocytic immunotherapies such as CD47 blockade have emerged as promising strategies for glioblastoma (GB) therapy, but the blood brain/tumor barriers (BBB/BTB) pose a persistent challenge for mCD47 delivery that can be overcome by focused ultrasound (FUS)-mediated BBB/BTB disruption. We here leverage immuno-PET imaging to determine how timing of [89Zr]-mCD47 injection relative to FUS impacts antibody penetrance into orthotopic murine gliomas. We then design and implement a rational paradigm for combining FUS and mCD47 for glioma therapy. We demonstrate that timing of antibody injection relative to FUS BBB/BTB disruption is a critical determinant of mCD47 access, with post-FUS injection conferring superlative antibody delivery to gliomas. We also show that mCD47 delivery across the BBB/BTB with repeat sessions of FUS can significantly constrain tumor outgrowth and extend survival in glioma-bearing mice. This study generates provocative insights for ongoing pre-clinical and clinical evaluations of FUS-mediated antibody delivery to brain tumors. Moreover, our results confirm that mCD47 delivery with FUS is a promising therapeutic strategy for GB therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioblastoma/terapia , Glioma/tratamiento farmacológico , Ratones , Microburbujas
13.
Arthrosc Sports Med Rehabil ; 2(4): e299-e307, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32875292

RESUMEN

PURPOSE: Standing radiographs are commonly used to plan angular correction in valgus tibial osteotomy for varus gonarthrosis. Most clinical studies have reported postoperative alignment as overall averages or means. The purpose of this study was to compare the preoperatively planned angle of correction measured on weight-bearing radiographs to the follow-up angle measured on weightbearing radiographs in individual patients 6 weeks after surgery and to analyze factors that could potentially affect achieving the planned degree of surgical correction. Our objective was to analyze factors potentially affecting the accuracy and ability to achieve the preoperatively planned correction angle (the target angle) in the individual patient. METHODS: We studied 35 tibial osteotomies (13 Coventry closing wedge osteotomies and 22 Maquet barrel vault osteotomies) performed for varus gonarthrosis between 1981 and 2019 to determine how accurately the target angle, based on preoperative standing weight-bearing radiographs, was achieved according to the postoperative radiographs in each individual. We reviewed 35 knees in 34 patients who had complete pre- and postoperative radiographs for review. RESULTS: Overall, only 14 of 35 (40%) of the patients were corrected to within ± 2° of the planned target angle. Valgus tibial osteotomy based on preoperative weightbearing radiographs is unpredictable in its ability to achieve the target angle on postoperative weightbearing radiographs when using either the Coventry or the Maquet surgical technique. The tendency was to undercorrect with either of the techniques. Larger (greater than 10°) preoperative varus alignment did not make it more difficult to achieve the target angle. Male or female sex and body mass index had no effect on the ability to achieve the target angle. CONCLUSIONS: Valgus tibial osteotomy planning based on preoperative weightbearing is unpredictable in its ability to achieve the target angle on postoperative weightbearing radiographs. Overall, only 40% of our patients were corrected to within ± 2° of the planned target angle. The tendency was to undercorrect, with either the Coventry or the Maquet technique. Contrary to our hypothesis, larger preoperative varus alignment (greater than 10°) did not make it more difficult to achieve the target angle. The Coventry technique was as accurate as the Maquet technique. LEVEL OF EVIDENCE: Level IV.

14.
Theranostics ; 10(19): 8821-8833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754281

RESUMEN

Background: Focused ultrasound (FUS) activation of microbubbles (MBs) for blood-brain (BBB) and blood-tumor barrier (BTB) opening permits targeted therapeutic delivery. While the effects of FUS+MBs mediated BBB opening have been investigated for normal brain tissue, no such studies exist for intracranial tumors. As this technology advances into clinical immunotherapy trials, it will be crucial to understand how FUS+MBs modulates the tumor immune microenvironment. Methods and Results: Bulk RNA sequencing revealed that FUS+MBs BTB/BBB opening (1 MHz, 0.5 MPa peak-negative pressure) of intracranial B16F1cOVA tumors increases the expression of genes related to proinflammatory cytokine and chemokine signaling, pattern recognition receptor signaling, and antigen processing and presentation. Flow cytometry revealed increased maturation (i.e. CD86) of dendritic cells (DCs) in the meninges and altered antigen loading of DCs in both the tumor and meninges. For DCs in tumor draining lymph nodes, FUS+MBs had no effect on maturation and elicited only a trend towards increased presentation of tumor-derived peptide by MHC. Neither tumor endothelial cell adhesion molecule expression nor homing of activated T cells was affected by FUS+MBs. Conclusion: FUS+MBs-mediated BTB/BBB opening elicits signatures of inflammation; however, the response is mild, transient, and unlikely to elicit a systemic response independent of administration of immune adjuvants.


Asunto(s)
Neoplasias Encefálicas/terapia , Células Dendríticas/metabolismo , Melanoma Experimental/terapia , Ovalbúmina/inmunología , Terapia por Ultrasonido/métodos , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Regulación Neoplásica de la Expresión Génica , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Ratones , Microburbujas , Análisis de Secuencia de ARN , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Sci Adv ; 6(18): eaay1344, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494662

RESUMEN

The delivery of systemically administered gene therapies to brain tumors is exceptionally difficult because of the blood-brain barrier (BBB) and blood-tumor barrier (BTB). In addition, the adhesive and nanoporous tumor extracellular matrix hinders therapeutic dispersion. We first developed the use of magnetic resonance image (MRI)-guided focused ultrasound (FUS) and microbubbles as a platform approach for transfecting brain tumors by targeting the delivery of systemically administered "brain-penetrating" nanoparticle (BPN) gene vectors across the BTB/BBB. Next, using an MRI-based transport analysis, we determined that after FUS-mediated BTB/BBB opening, mean interstitial flow velocity magnitude doubled, with "per voxel" flow directions changing by an average of ~70° to 80°. Last, we observed that FUS-mediated BTB/BBB opening increased the dispersion of directly injected BPNs through tumor tissue by >100%. We conclude that FUS-mediated BTB/BBB opening yields markedly augmented interstitial tumor flow that, in turn, plays a critical role in enhancing BPN transport through tumor tissue.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Barrera Hematoencefálica , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Microburbujas , Transfección
16.
Arthroscopy ; 35(10): 2845-2846, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31604502

RESUMEN

Hip arthroscopy for femoroacetabular impingement has generally been considered to enjoy a high rate of success. These patients tend to be young and active. One measure of "success" has been return to sport. However, much of the literature has used subjective return criteria and reported on diverse groups in terms of skill levels, sports, and sexes, as well as small numbers, thus limiting specific recommendations.


Asunto(s)
Baloncesto , Pinzamiento Femoroacetabular , Artroscopía , Estudios de Seguimiento , Articulación de la Cadera , Humanos , Volver al Deporte
17.
Phys Med Biol ; 64(10): 105019, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30947154

RESUMEN

The aim of this work was to develop a novel hybrid 3D hyperpolarized (HP) gas tagging MRI (t-MRI) technique and to evaluate it for lung respiratory motion measurement with comparison to deformable image registrations (DIR) methods. Three healthy subjects underwent a hybrid MRI which combines 3D HP gas t-MRI with a low resolution (Low-R, 4.5 mm isotropic voxels) 3D proton MRI (p-MRI), plus a high resolution (High-R, 2.5 mm isotropic voxels) 3D p-MRI, during breath-holds at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Displacement vector field (DVF) of the lung motion was determined from the t-MRI images by tracking tagging grids and from the High-R p-MRI using three DIR methods (B-spline based method implemented by Velocity, Free Form Deformation by MIM, and B-spline by an open source software Elastix: denoted as A, B, and C, respectively), labeled as tDVF and dDVF, respectively. The tDVF from the HP gas t-MRI was used as ground-truth reference to evaluate performance of the three DIR methods. Differences in both magnitude and angle between the tDVF and dDVFs were analyzed. The mean lung motion of the three subjects was 37.3 mm, 8.9 mm and 12.9 mm, respectively. Relatively large discrepancies were observed between the tDVF and the dDVFs as compared to previously reported DIR errors. The mean ± standard deviation (SD) DVF magnitude difference was 8.3 ± 5.6 mm, 9.2 ± 4.5 mm, and 9.3 ± 6.1 mm, and the mean ± SD DVF angular difference was 29.1 ± 12.1°, 50.1 ± 28.6°, and 39.0 ± 6.3°, for the DIR Methods A, B, and C, respectively. These preliminary results showed that the hybrid HP gas t-MRI technique revealed different lung motion patterns as compared to the DIR methods. It may provide unique perspectives in developing and evaluating DIR of the lungs. Novelty and Significance We designed a MRI protocol that includes a novel hybrid MRI technique (3D HP gas t-MRI with a low resolution 3D p-MRI) plus a high resolution 3D p-MRI. We tested the novel hybrid MRI technique on three healthy subjects for measuring regional lung respiratory motion with comparison to deformable image registrations (DIR) methods, and observed relatively large discrepancies in lung motion between HP gas t-MRI and DIR methods.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos , Protones , Adulto , Estudios de Factibilidad , Femenino , Voluntarios Sanos , Humanos , Pulmón/diagnóstico por imagen , Masculino , Proyectos Piloto , Ventilación Pulmonar , Mecánica Respiratoria , Adulto Joven
18.
Med Phys ; 45(12): 5535-5542, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30276819

RESUMEN

BACKGROUND: Deformable image registration (DIR)-based lung ventilation mapping is attractive due to its simplicity, and also challenging due to its susceptibility to errors and uncertainties. In this study, we explored the use of 3D Hyperpolarized (HP) gas tagging MRI to evaluate DIR-based lung ventilation. METHOD AND MATERIAL: Three healthy volunteers included in this study underwent both 3D HP gas tagging MRI (t-MRI) and 3D proton MRI (p-MRI) using balanced steady-state free precession pulse sequence at end of inhalation and end of exhalation. We first obtained the reference displacement vector fields (DVFs) from the t-MRIs by tracking the motion of each tagging grid between the exhalation and the inhalation phases. Then, we determined DIR-based DVFs from the p-MRIs by registering the images at the two phases with two commercial DIR algorithms. Lung ventilations were calculated from both the reference DVFs and the DIR-based DVFs using the Jacobian method and then compared using cross correlation and mutual information. RESULTS: The DIR-based lung ventilations calculated using p-MRI varied considerably from the reference lung ventilations based on t-MRI among all three subjects. The lung ventilations generated using Velocity AI were preferable for the better spatial homogeneity and accuracy compared to the ones using MIM, with higher average cross correlation (0.328 vs 0.262) and larger average mutual information (0.528 vs 0.323). CONCLUSION: We demonstrated that different DIR algorithms resulted in different lung ventilation maps due to underlining differences in the DVFs. HP gas tagging MRI provides a unique platform for evaluating DIR-based lung ventilation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Imagen por Resonancia Magnética , Ventilación Pulmonar , Adulto , Femenino , Humanos , Masculino , Adulto Joven
20.
Mol Psychiatry ; 23(8): 1711-1716, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29112197

RESUMEN

Despite ethnic differences in allele frequencies of variants in dopaminergic genes associated with dopamine D2/D3 receptor availability (D2R), no study to date has investigated the relationship between genetic ancestry and striatal D2R. Here, we show that ancestry-informative markers significantly predict dorsal striatal D2R in 117 healthy ethnically diverse residents of the New York metropolitan area using Positron Emission Tomography (PET) with [11C]raclopride (P<0.0001), while correcting for age, sex, BMI, education, smoking status, and estimated socioeconomic status (ZIP codes). Effects of ethnicity on D2R were not driven by variation in dopaminergic candidate genes. Instead, candidate gene associations with striatal D2R were diminished when correcting for ancestry. These findings imply that future studies investigating D2 receptor genes should covary for genetic ancestry or study homogeneous populations. Moreover, ancestry studies on human neurobiology should control for socioeconomic differences between ethnic groups.


Asunto(s)
Cuerpo Estriado/metabolismo , Grupos Raciales/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Adolescente , Adulto , Factores de Edad , Mapeo Encefálico , Estudios de Cohortes , Cuerpo Estriado/diagnóstico por imagen , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Tomografía de Emisión de Positrones , Racloprida , Radiofármacos , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Factores Socioeconómicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA