Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 42(11): e111901, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917141

RESUMEN

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Asunto(s)
Ácidos Grasos , Malonil Coenzima A , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Oxidación-Reducción , Mitocondrias/metabolismo
2.
J Clin Invest ; 125(10): 3847-60, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26389676

RESUMEN

Insulin secretion from ß cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing ß cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues ß cell function in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Endopeptidasas/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Isocitratos/metabolismo , Animales , Dominio Catalítico , Membrana Celular/metabolismo , Cisteína Endopeptidasas , Diabetes Mellitus Tipo 2/patología , Endopeptidasas/biosíntesis , Endopeptidasas/deficiencia , Endopeptidasas/genética , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Glucosa/farmacología , Glutatión/farmacología , Células HEK293 , Homeostasis , Humanos , Insulina/farmacología , Secreción de Insulina , Islotes Pancreáticos/fisiopatología , Isocitrato Deshidrogenasa/fisiología , Isocitratos/farmacología , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , NADP/metabolismo , Especificidad de Órganos , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Secretoras/metabolismo , Transducción de Señal , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA