Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38785716

RESUMEN

Electroporation is pivotal in bioelectrochemistry for cellular manipulation, with prominent applications in drug delivery and cell membrane studies. A comprehensive understanding of pore generation requires an in-depth analysis of the critical pore size and the corresponding energy barrier at the onset of cell rupture. However, many studies have been limited to basic models such as artificial membranes or theoretical simulations. Challenging this paradigm, our study pioneers using a microfluidic electroporation chip array. This tool subjects live breast cancer cell species to a diverse spectrum of alternating current electric field conditions, driving electroporation-induced cell rupture. We conclusively determined the rupture voltages across varying applied voltage loading rates, enabling an unprecedented characterization of electric cell rupture dynamics encompassing critical pore radius and energy barrier. Further bolstering our investigation, we probed cells subjected to cholesterol depletion via methyl-ß-cyclodextrin and revealed a strong correlation with electroporation. This work not only elucidates the dynamics of electric rupture in live cell membranes but also sets a robust foundation for future explorations into the mechanisms and energetics of live cell electroporation.


Asunto(s)
Membrana Celular , Electroporación , Humanos , Membrana Celular/metabolismo , Microfluídica , Línea Celular Tumoral , beta-Ciclodextrinas , Colesterol , Dispositivos Laboratorio en un Chip , Neoplasias de la Mama
2.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421154

RESUMEN

In recent years, an interesting biomarker called membrane breakdown voltage has been examined using artificial planar lipid bilayers. Even though they have great potential to identify cell electrical phenotyping for distinguishing similar cell lines or cells under different physiological conditions, the biomarker has not been evaluated in the context of living cell electrical phenotyping. Herein, we present a single-cell analysis platform to continuously measure the electric response in a large number of cells in parallel using electric frequency and voltage variables. Using this platform, we measured the direction of cell displacement and transparent cell image alteration as electric polarization of the cell responds to signal modulation, extracting the dielectrophoretic crossover frequency and membrane breakdown voltage for each cell, and utilizing the measurement results in the same spatiotemporal environment. We developed paired parameters using the dielectrophoretic crossover frequency and membrane breakdown voltage for each cell and evaluated the paired parameter efficiency concerning the identification of two different breast cancer cells and cell drug response. Moreover, we showed that the platform was able to identify cell electrical phenotyping, which was generated by subtle changes in cholesterol depletion-induced cell membrane integrity disruption when the paired parameter was used. Our platform introduced in this paper is extremely useful for facilitating more accurate and efficient evaluation of cell electrical phenotyping in a variety of applications, such as cell biology and drug discovery.


Asunto(s)
Membrana Dobles de Lípidos , Análisis de la Célula Individual , Electricidad , Membrana Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA