Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Theranostics ; 13(3): 1076-1090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793871

RESUMEN

Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. Method: Ptp4a1-/- mice, adeno-associated virus encoding Ptp4a1 under liver-specific promoter, adenovirus encoding Fgf21, and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis. Glucose tolerance test, insulin tolerance test, 2-deoxyglucose uptake assay, and hyperinsulinemic-euglycemic clamp were performed to estimate glucose homeostasis in mice. The staining, including oil red O, hematoxylin & eosin, and BODIPY, and biochemical analysis for hepatic triglycerides were performed to assess hepatic lipids. Luciferase reporter assays, immunoprecipitation, immunoblots, quantitative real-time polymerase chain reaction, and immunohistochemistry staining were conducted to explore the underlying mechanism. Results: Here, we found that deficiency of PTP4A1 aggravated glucose homeostasis and hepatosteatosis in mice fed a high-fat (HF) diet. Increased lipid accumulation in hepatocytes of Ptp4a1-/- mice reduced the level of glucose transporter 2 on the plasma membrane of hepatocytes leading to a diminution of glucose uptake. PTP4A1 prevented hepatosteatosis by activating the transcription factor cyclic adenosine monophosphate-responsive element-binding protein H (CREBH)/fibroblast growth factor 21 (FGF21) axis. Liver-specific PTP4A1 or systemic FGF21 overexpression in Ptp4a1-/- mice fed an HF diet restored the disorder of hepatosteatosis and glucose homeostasis. Finally, liver-specific PTP4A1 expression ameliorated an HF diet-induced hepatosteatosis and hyperglycemia in wild-type mice. Conclusions: Hepatic PTP4A1 is critical for regulating hepatosteatosis and glucose homeostasis by activating the CREBH/FGF21 axis. Our current study provides a novel function of PTP4A1 in metabolic disorders; hence, modulating PTP4A1 may be a potential therapeutic strategy against hepatosteatosis-related diseases.


Asunto(s)
Dieta Alta en Grasa , Hiperglucemia , Humanos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hiperglucemia/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Glucosa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
BMB Rep ; 56(2): 96-101, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36476270

RESUMEN

Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells. [BMB Reports 2023; 56(2): 96-101].


Asunto(s)
Antineoplásicos , Ferroptosis , Humanos , Material Particulado , Hierro , Antioxidantes , Especies Reactivas de Oxígeno/metabolismo
3.
Cardiovasc Res ; 119(5): 1265-1278, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36534975

RESUMEN

AIMS: The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs. METHODS AND RESULTS: In human tissues, human umbilical artery ECs, and mouse models for loss of function and gain of function of PTP4A1, we conducted histological analysis, immunostaining, laser-captured microdissection assay, lentiviral infection, small interfering RNA transfection, quantitative real-time PCR and reverse transcription-PCR, as well as luciferase reporter gene and chromatin immunoprecipitation assays. Short hairpin RNA-mediated knockdown of PTP4A1 and overexpression of PTP4A1 in ECs indicated that PTP4A1 is critical for inhibiting the expression of cell adhesion molecules (CAMs). PTP4A1 increased the transcriptional activity of upstream stimulatory factor 1 (USF1) by dephosphorylating its S309 residue and subsequently inducing the transcription of tumour necrosis factor-alpha-induced protein 3 (TNFAIP3/A20) and the inhibition of NF-κB activity. Studies on Ptp4a1 knockout or transgenic mice demonstrated that PTP4A1 potently regulates the interleukin 1ß-induced expression of CAMs in vivo. In addition, we verified that PTP4A1 deficiency in apolipoprotein E knockout mice exacerbated high-fat high-cholesterol diet-induced atherogenesis with upregulated expression of CAMs. CONCLUSION: Our data indicate that PTP4A1 is a novel negative regulator of vascular inflammation by inducing USF1/A20 axis-mediated NF-κB inactivation. Therefore, the expression and/or activation of PTP4A1 in ECs might be useful for the treatment of vascular inflammatory diseases.


Asunto(s)
Células Endoteliales , FN-kappa B , Vasculitis , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Factores Estimuladores hacia 5'/metabolismo , Vasculitis/genética , Vasculitis/metabolismo
4.
Int J Oncol ; 62(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453252

RESUMEN

Endothelin receptor A (EDNRA) has been reported to play various crucial physiological roles and has been shown to be associated with the pathology of several diseases, including colorectal cancer (CRC). However, the molecular mechanisms of EDNRA in the development of human CRC have not been fully elucidated to date. In this context, the present study was performed to investigate biological functions and novel downstream signaling pathways affected by EDNRA, during CRC progression. First, using public data repositories, it was observed that the EDRNA expression levels were markedly increased in CRC tissues, as compared to normal tissues. Patients with CRC with an increased EDNRA expression exhibited a significantly decreased survival rate in comparison with those with a lower EDNRA expression. Furthermore, a positive correlation between the levels of EDNRA and its ligand, EDN1, was found in CRC tissues. The ectopic expression of EDNRA or its ligand, EDN1, promoted, whereas the silencing of EDNRA or EDN1 decreased cell proliferation and migration in vitro. To elucidate the signaling pathways involved in the regulation of EDNRA expression in CRC cells, a phosphokinase array analysis was performed, and it was observed that the knockdown of EDNRA substantially suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in CRC cells. Of note, STAT3 silencing simultaneously decreased EDN1 and EDNRA expression, with the expression of EDN1 and/or EDNRA appearing to be directly regulated by binding STAT3 to their promoter region, according to chromatin immunoprecipitation and promoter assays, ultimately indicating a positive feedback loop in the expression of EDNRA and EDN1. It was also observed that treatment with an EDNRA antagonist (macitentan), alone or in combination with cisplatin, suppressed cell growth and migration ability, and induced cell apoptosis. Collectively, these data suggest a critical role of the EDN1/EDNRA signaling pathway in CRC progression. Thus, the pharmacological intervention of this signaling pathway may prove to be a potential therapeutic approach for patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Factor de Transcripción STAT3 , Humanos , Fosforilación , Factor de Transcripción STAT3/genética , beta-Arrestinas , Receptores de Endotelina , Ligandos , Neoplasias Colorrectales/genética
5.
Exp Mol Med ; 54(8): 1250-1261, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36028759

RESUMEN

Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon's hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3-/- mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3-/- mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Metabolismo Energético , Resistencia a la Insulina , Proteínas de Microfilamentos , Enfermedad del Hígado Graso no Alcohólico , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Humanos , Resistencia a la Insulina/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo
6.
BMB Rep ; 55(3): 142-147, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34674794

RESUMEN

Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs. [BMB Reports 2022; 55(3): 142-147].


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Teratoma , Animales , Anticuerpos Monoclonales/metabolismo , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo
7.
BMB Rep ; 54(11): 545-550, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34353427

RESUMEN

Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1ß as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κBinducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis. [BMB Reports 2021; 54(11): 545-550].


Asunto(s)
Anisomicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/antagonistas & inhibidores , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , FN-kappa B/antagonistas & inhibidores , Sepsis/prevención & control , Animales , Femenino , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Sepsis/inducido químicamente , Sepsis/metabolismo , Sepsis/patología
8.
Biosens Bioelectron ; 178: 113039, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33524707

RESUMEN

As stem cells show great promise in regenerative therapy, stem cell-mediated therapeutic efficacy must be demonstrated through the migration and transplantation of stem cells into target disease areas at the pre-clinical level. In this study, we developed manganese-based magnetic nanoparticles with hollow structures (MnOHo) and modified them with the anti-human integrin ß1 antibody (MnOHo-Ab) to enable the minimal-invasive monitoring of transplanted human stem cells at the pre-clinical level. Compared to common magnetic resonance imaging (MRI)-based stem cell monitoring systems that use pre-labeled stem cells with magnetic particles before stem cell injection, the MnOHo-Ab is a new technology that does not require stem cell modification to monitor the therapeutic capability of stem cells. Additionally, MnOHo-Ab provides improved T1 MRI owing to the hollow structure of the MnOHo. Particularly, the anti-integrin ß1 antibody (Ab) introduced in the MnOHo targets integrin ß1 expressed in the entire stem cell lineage, enabling targeted monitoring regardless of the differentiation stage of the stem cells. Furthermore, we verified that intravenously injected MnOHo-Ab specifically targeted human induced pluripotent stem cells (hiPSCs) that were transferred to mice testes and differentiated into various lineages. The new stem cell monitoring method using MnOHo-Ab demonstrates whether the injected human stem cells have migrated and transplanted themselves in the target area during long-term stem cell regenerative therapy.


Asunto(s)
Técnicas Biosensibles , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Humanos , Imagen por Resonancia Magnética , Trasplante de Células Madre
9.
Cell Death Differ ; 28(3): 968-984, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989241

RESUMEN

Gallbladder carcinoma (GBC) exhibits poor prognosis due to local recurrence, metastasis, and resistance to targeted therapies. Using clinicopathological analyses of GBC patients along with molecular in vitro and tumor in vivo analysis of GBC cells, we showed that reduction of Dsg2 expression was highly associated with higher T stage, more perineural, and lymphatic invasion. Dsg2-depleted GBC cells exhibited significantly enhanced proliferation, migration, and invasiveness in vitro and tumor growth and metastasis in vivo through Src-mediated signaling activation. Interestingly, Dsg2 binding inhibited Src activation, whereas its loss activated cSrc-mediated EGFR plasma membrane clearance and cytoplasmic localization, which was associated with acquired EGFR-targeted therapy resistance and decreased overall survival. Inhibition of Src activity by dasatinib enhanced therapeutic response to anti-EGFR therapy. Dsg2 status can help stratify predicted patient response to anti-EGFR therapy and Src inhibition could be a promising strategy to improve the clinical efficacy of EGFR-targeted therapy.


Asunto(s)
Carcinoma/tratamiento farmacológico , Desmogleína 2/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/metabolismo , Animales , Carcinoma/enzimología , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Desmogleína 2/genética , Progresión de la Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de la Vesícula Biliar/enzimología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/genética
10.
Proc Natl Acad Sci U S A ; 117(51): 32433-32442, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288688

RESUMEN

Ferroptosis is an iron-dependent regulated necrosis mediated by lipid peroxidation. Cancer cells survive under metabolic stress conditions by altering lipid metabolism, which may alter their sensitivity to ferroptosis. However, the association between lipid metabolism and ferroptosis is not completely understood. In this study, we found that the expression of elongation of very long-chain fatty acid protein 5 (ELOVL5) and fatty acid desaturase 1 (FADS1) is up-regulated in mesenchymal-type gastric cancer cells (GCs), leading to ferroptosis sensitization. In contrast, these enzymes are silenced by DNA methylation in intestinal-type GCs, rendering cells resistant to ferroptosis. Lipid profiling and isotope tracing analyses revealed that intestinal-type GCs are unable to generate arachidonic acid (AA) and adrenic acid (AdA) from linoleic acid. AA supplementation of intestinal-type GCs restores their sensitivity to ferroptosis. Based on these data, the polyunsaturated fatty acid (PUFA) biosynthesis pathway plays an essential role in ferroptosis; thus, this pathway potentially represents a marker for predicting the efficacy of ferroptosis-mediated cancer therapy.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Ferroptosis/fisiología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Araquidónico/genética , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Carbolinas/farmacología , Línea Celular Tumoral , Metilación de ADN , delta-5 Desaturasa de Ácido Graso , Elementos de Facilitación Genéticos , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos/genética , Regiones Promotoras Genéticas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología
11.
Endocr Relat Cancer ; 27(11): 601-614, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33022637

RESUMEN

Anaplastic thyroid cancer (ATC) is a rapidly growing, highly metastatic cancer with limited therapeutic alternatives, thus targeted therapies need to be developed. This study aimed to examine desmoglein 2 (Dsg2) expression in ATC and its biological role and potential as a therapeutic target in ATC. Consequently, Dsg2 was downregulated or aberrantly expressed in ATC tissues. ATC patients with low Dsg2 expression levels also presented with distant metastasis. Dsg2 depletion significantly increased cell migration and invasion, with a relatively limited effect on ATC cell proliferation in vitro and increased distant metastasis in vivo. Dsg2 knockdown induced cell motility through the hepatocyte growth factor receptor (HGFR, c-Met)/Src/Rac1 signaling axis, with no alterations in the expression of EMT-related molecules. Further, specific targeting of c-Met significantly inhibited the motility of shDsg2-depleted ATC cells. Decreased membrane Dsg2 expression increased the metastatic potential of ATC cells. These results indicate that Dsg2 plays an important role in ATC cell migration and invasiveness. Therapies targeting c-Met might be effective among ATC patients with low membrane Dsg2 expression levels, indicating that the analysis of Dsg2 expression potentially provides novel insights into treatment strategies for ATC.


Asunto(s)
Desmogleína 2/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Carcinoma Anaplásico de Tiroides/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica , Estudios Retrospectivos , Análisis de Supervivencia , Carcinoma Anaplásico de Tiroides/mortalidad , Transfección
12.
Exp Mol Med ; 52(9): 1587-1601, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32929220

RESUMEN

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II). Prdx2-/- mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas from Prdx2-/- mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA.


Asunto(s)
Angiotensina II/efectos adversos , Aneurisma de la Aorta Abdominal/etiología , Aneurisma de la Aorta Abdominal/patología , Susceptibilidad a Enfermedades , Peroxirredoxinas/deficiencia , Animales , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Biomarcadores , Biopsia , Moléculas de Adhesión Celular/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno , Ultrasonografía
13.
Biomaterials ; 259: 120265, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32827795

RESUMEN

The self-renewal properties of human pluripotent stem cells (hPSCs) contribute to their efficacy in tissue regeneration applications yet increase the likelihood of teratoma formation, thereby limiting their clinical utility. To address this issue, we developed a tool to specifically target and neutralize undifferentiated hPSCs, thereby minimizing tumorigenicity risk without negatively affecting regenerated and somatic tissues. Specifically, we conjugated a monoclonal antibody (K6-1) previously generated in our laboratory against desmoglein 2 (Dsg2), which is highly differentially expressed in undifferentiated hPSCs versus somatic tissues, to the chemotherapeutic agent doxorubicin (DOX). The K6-1-DOX conjugates were selectively targeted and incorporated into Dsg2-positive hPSCs, leading to pH-dependent endosomal release and nuclear localization of DOX with subsequent cytotoxicity via an apoptotic caspase cascade. Conversely, Dsg2-negative fibroblasts showed minimal conjugate uptake or cytotoxicity, suggesting that K6-1-DOX treatment would yield few side effects owing to off-target effects. Selective removal of undifferentiated stem cells was also supported by in vivo studies using a mouse xenograft model, wherein hIgG-DOX- but not K6-1-DOX-pretreated-hPSC injection led to teratoma development. Together, these results validated the ability of the Dsg2-targeted antibody-anticancer drug conjugate to facilitate the safety of stem cell therapies.


Asunto(s)
Antineoplásicos , Células Madre Pluripotentes , Teratoma , Anticuerpos Monoclonales , Doxorrubicina/farmacología , Humanos
14.
Cell Death Dis ; 11(4): 231, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286254

RESUMEN

Malignant melanoma is a fatal disease that rapidly spreads to the whole body. Treatments have limited efficiency owing to drug resistance and various side effects. Pseudomonas syringae pv. tomato (Pto) is a model bacterial pathogen capable of systemic infection in plants. Pto injects the effector protein HopQ into the plant cytosol via a type III secretion machinery and suppresses the host immunity. Intriguingly, host plant proteins regulated by HopQ are conserved even in humans and conferred in tumor metastasis. Nevertheless, the potential for HopQ to regulate human cancer metastasis was unknown. In this study, we addressed the suitability of HopQ as a possible drug against melanoma metastasis. In melanoma cells, overexpressed HopQ is phosphorylated and bound to 14-3-3 through its N-terminal domain, resulting in stronger interaction between HopQ and vimentin. The binding of HopQ to vimentin allowed for degradation of vimentin via p62-dependent selective autophagy. Attenuation of vimentin expression by HopQ inhibited melanoma motility and in vivo metastasis. These findings demonstrated that HopQ directly degraded vimentin in melanoma cells and could be applied to an inhibitor of melanoma metastasis.


Asunto(s)
Melanoma/tratamiento farmacológico , Vimentina/uso terapéutico , Animales , Autofagia , Movimiento Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Fosforilación , Transfección , Vimentina/farmacología
15.
Gastric Cancer ; 23(4): 600-613, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112274

RESUMEN

BACKGROUND: Spasmolytic polypeptide-expressing metaplasia (SPEM) is considered a precursor lesion of intestinal metaplasia and intestinal-type gastric cancer (GC), but little is known about microRNA alterations during metaplasia and GC developments. Here, we investigate miR-30a expression in gastric lesions and identify its novel target gene which is associated with the intestinal-type GC. METHODS: We conducted in situ hybridization and qRT-PCR to determine miR-30a expression in gastric tissues. miR-30a functions were determined through induction or inhibition of miR-30a in GC cell lines. A gene microarray was utilized to confirm miR-30a target genes in GC, and siRNA-mediated target gene suppression and immunostaining were performed. The Cancer Genome Atlas data were utilized to validate gene expressions. RESULTS: We found down-regulation of miR-30a during chief cell transdifferentiation into SPEM. MiR-30a level was also reduced in the early stage of GC, and its level was maintained in advanced GC. We identified a novel target gene of miR-30a and ITGA2, and our results showed that either ectopic expression of miR-30a or ITGA2 knockdown suppressed GC cell proliferation, migration, and tumorigenesis. Levels of ITGA2 inversely correlated with levels of miR-30a in human intestinal-type GC. CONCLUSION: We found down-regulation of miR-30a in preneoplastic lesions and its tumor-suppressive functions by targeting ITGA2 in GC. The level of ITGA2, which functions as an oncogene, was up-regulated in human GC. The results of this study suggest that coordination of the miR-30a-ITGA2 axis may serve as an important mechanism in the development of gastric precancerous lesions and intestinal-type GC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica , Integrina alfa2/metabolismo , Neoplasias Intestinales/patología , MicroARNs/genética , Neoplasias Gástricas/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Integrina alfa2/genética , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Front Immunol ; 10: 2636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781121

RESUMEN

In host defense, it is crucial to maintain the acidity of the macrophage phagosome for effective bacterial clearance. However, the mechanisms governing phagosomal acidification upon exposure to gram-negative bacteria have not been fully elucidated. In this study, we demonstrate that in macrophages exposed to Escherichia coli, the thioredoxin-interacting protein (TXNIP)-associated inflammasome plays a role in pH modulation through the activated caspase-1-mediated inhibition of NADPH oxidase. While there was no difference in early-phase bacterial engulfment between Txnip knockout (KO) macrophages and wild-type (WT) macrophages, Txnip KO macrophages were less efficient at destroying intracellular bacteria in the late phase, and their phagosomes failed to undergo appropriate acidification. These phenomena were associated with reactive oxygen species production and were reversed by treatment with an NADPH oxidase inhibitor or a caspase inhibitor. In line with these results, Txnip KO mice were more susceptible to both intraperitoneally administered E. coli and sepsis induced by cecum ligation and puncture than WT mice. Taken together, this study suggests that the TXNIP-associated inflammasome-caspase-1 axis regulates NADPH oxidase to modulate the pH of the phagosome, controlling bacterial clearance by macrophages.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Infecciones por Escherichia coli/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Fagosomas/química , Tiorredoxinas/inmunología , Animales , Activación Enzimática/inmunología , Escherichia coli/inmunología , Concentración de Iones de Hidrógeno , Macrófagos/química , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/inmunología , Fagosomas/inmunología
17.
Sci Rep ; 9(1): 16757, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727938

RESUMEN

Cancer stem-like cells (CSCs) can generate solid tumors through the properties of stem cells such as self-renewal and differentiation and they cause drug resistance, metastasis and recurrence. Therefore, establishing CSC lines is necessary to conduct various studies such as on the identification of CSC origin and specific targeted therapies. In this study, we stimulated NIH3T3 fibroblasts to exhibit the characteristics of CSCs using the whole protein lysates of B16F10 melanoma cells. As a result, we induced colony formation that displayed self-renewal and differentiation capacities through anchorage-independent culture and re-attached culture. Moreover, colonies showed drug resistance by being maintained in the G0/G1 state. Colonies expressed various CSC markers and displayed high-level drug efflux capacity. Additionally, colonies clearly demonstrated tumorigenic ability by forming a solid tumor in vivo. These results show that proteins of cancer cells could transform normal cells into CSCs by increasing expression of CSC markers. This study argues the tremendous importance of the extracellular microenvironmental effect on the generation of CSCs. It also provides a simple experimental method for deriving CSCs that could be based on the development of targeted therapy techniques.


Asunto(s)
Fibroblastos/citología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Células Madre Neoplásicas/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Células 3T3 NIH , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Microambiente Tumoral
18.
Genes (Basel) ; 10(11)2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717435

RESUMEN

Increasing evidence has demonstrated that increased expression of cyclin-dependent kinase regulatory subunit 1B (CKS1B) is associated with the pathogenesis of many human cancers, including colorectal cancer (CRC). However, the regulatory mechanisms underlying the expression of CKS1B in CRC are not completely understood. Here, we investigate the role played by microRNAs in the expression of CKS1B and carcinogenesis in CRC. Among the six microRNAs predicted to target CKS1B gene expression, only miR-1258 was revealed to downregulate CKS1B expression through binding to its 3'-UTR region, as ectopic miR-1258 expression suppressed CKS1B expression and vice versa. In CRC, miR-1258 expression also decreased cell proliferation and migration in vitro and tumor growth in vivo, similar to cells with silenced CKS1B expression. Considering the highly increased levels of CKS1B and decreased expression of miR-1258 in tumors from CRC patients, these findings suggest that miR-1258 may play tumor-suppressive roles by targeting CKS1B expression in CRC. However, the therapeutic significance of these findings should be evaluated in clinical settings.


Asunto(s)
Quinasas CDC2-CDC28/genética , Neoplasias Colorrectales/genética , MicroARNs/genética , Animales , Quinasas CDC2-CDC28/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Int J Nanomedicine ; 14: 7375-7387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31686813

RESUMEN

BACKGROUND: The size of nanoparticles is considered to influence their toxicity, as smaller-sized nanoparticles should more easily penetrate the cell and exert toxic effects. However, conflicting results and unstandardized methodology have resulted in controversy of these size-dependent effects. Here, we introduce a unique approach to study such size-dependent effects of nanoparticles and present evidence that reliably supports this general assumption along with elucidation of the underlying cytotoxic mechanism. METHODS: We prepared and physically characterized size-controlled (20-50 nm) monodispersed silica nanoparticles (SNPs) in aqueous suspensions. Then, a variety of biochemical assessments are used for evaluating the cytotoxic mechanisms. RESULTS: SNP treatment in three cell lines decreased cell viability and migration ability, while ROS production increased in dose- and size-dependent manners, with SNPs <30 nm showing the greatest effects. 30- and 40-nm SNPs were observed similar to these biological activities of 20- and 50-nm, respectively. Under the conventionally used serum-free conditions, both 20-nm and 50-nm SNPs at the IC50 values (75.2 and 175.2 µg/mL) induced apoptosis and necrosis in HepG2 cells, whereas necrosis was more rapid with the smaller SNPs. Inhibiting endocytosis impeded the internalization of the 50-nm but not the 20-nm SNPs. However, agglomeration following serum exposure increased the size of the 20-nm SNPs to approximately 50 nm, preventing their internalization and cell membrane damage without necrosis. Thus, 20-nm and 50-nm SNPs show different modes of cellular uptake, with smaller SNPs capable of trafficking into the cells in an endocytosis-independent manner. This approach of using non-overlapping size classes of SNPs under the same dose, along with serum-induced agglomeration analysis clarifies this long-standing question about the safety of small SNPs. CONCLUSION: Our results highlight the need to revise safety guidelines to account for this demonstrated size-dependent cytotoxicity under serum-free conditions, which may be similar to the microenvironment after tissue penetration.


Asunto(s)
Apoptosis , Endocitosis , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Proteínas Sanguíneas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Células Hep G2 , Humanos , Nanopartículas/ultraestructura , Necrosis
20.
Exp Mol Med ; 51(10): 1-13, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615975

RESUMEN

The disruption of the retinal pigment epithelium (RPE), for example, through oxidative damage, is a common factor underlying age-related macular degeneration (AMD). Aberrant autophagy also contributes to AMD pathology, as autophagy maintains RPE homeostasis to ensure blood-retinal barrier (BRB) integrity and protect photoreceptors. Thioredoxin-interacting protein (TXNIP) promotes cellular oxidative stress by inhibiting thioredoxin reducing capacity and is in turn inversely regulated by reactive oxygen species levels; however, its role in oxidative stress-induced RPE cell dysfunction and the mechanistic link between TXNIP and autophagy are largely unknown. Here, we observed that TXNIP expression was rapidly downregulated in RPE cells under oxidative stress and that RPE cell proliferation was decreased. TXNIP knockdown demonstrated that the suppression of proliferation resulted from TXNIP depletion-induced autophagic flux, causing increased p53 activation via nuclear localization, which in turn enhanced AMPK phosphorylation and activation. Moreover, TXNIP downregulation further negatively impacted BRB integrity by disrupting RPE cell tight junctions and enhancing cell motility by phosphorylating, and thereby activating, Src kinase. Finally, we also revealed that TXNIP knockdown upregulated HIF-1α, leading to the enhanced secretion of VEGF from RPE cells and the stimulation of angiogenesis in cocultured human retinal microvascular endothelial cells. This suggests that the exposure of RPE cells to sustained oxidative stress may promote choroidal neovascularization, another AMD pathology. Together, these findings reveal three distinct mechanisms by which TXNIP downregulation disrupts RPE cell function and thereby exacerbates AMD pathogenesis. Accordingly, reinforcing or restoring BRB integrity by targeting TXNIP may serve as an effective therapeutic strategy for preventing or attenuating photoreceptor damage in AMD.


Asunto(s)
Barrera Hematorretinal/metabolismo , Proteínas Portadoras/genética , Degeneración Macular/genética , Estrés Oxidativo/genética , Animales , Autofagia/genética , Barrera Hematorretinal/patología , Movimiento Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Degeneración Macular/patología , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Tiorredoxinas/genética , Uniones Estrechas/genética , Uniones Estrechas/patología , Proteína p53 Supresora de Tumor/genética , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA