Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 47137-47149, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39106079

RESUMEN

With their low immunogenicity and excellent deliverability, extracellular vesicles (EVs) are promising platforms for drug delivery systems. In this study, hydrophobic molecule loading techniques were developed via an exchange reaction based on supramolecular chemistry without using organic solvents that can induce EV disruption and harmful side effects. To demonstrate the availability of an exchanging reaction to prepare drug-loading EVs, hydrophobic boron cluster carborane (CB) was introduced to EVs (CB@EVs), which is expected as a boron agent for boron neutron capture therapy (BNCT). The exchange reaction enabled the encapsulation of CB to EVs without disrupting their structure and forming aggregates. Single-particle analysis revealed that an exchanging reaction can uniformly introduce cargo molecules to EVs, which is advantageous in formulating pharmaceuticals. The performance of CB@EVs as boron agents for BNCT was demonstrated in vitro and in vivo. Compared to L-BPA, a clinically available boron agent, and CB delivered with liposomes, CB@EV systems exhibited the highest BNCT activity in vitro due to their excellent deliverability of cargo molecules via an endocytosis-independent pathway. The system can deeply penetrate 3D cultured spheroids even in the presence of extracellular matrices. The EV-based system could efficiently accumulate in tumor tissues in tumor xenograft model mice with high selectivity, mainly via the enhanced permeation and retention effect, and the deliverability of cargo molecules to tumor tissues in vivo enhanced the therapeutic benefits of BNCT compared to the L-BPA/fructose complex. All of the features of EVs are also advantageous in establishing anticancer agent delivery platforms.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Vesículas Extracelulares , Terapia por Captura de Neutrón de Boro/métodos , Animales , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ratones , Humanos , Boranos/química , Boro/química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Línea Celular Tumoral , Portadores de Fármacos/química , Ratones Desnudos , Ratones Endogámicos BALB C
2.
ChemMedChem ; : e202400323, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830821

RESUMEN

Boron neutron capture therapy (BNCT) is one of the most promising modalities for cancer treatment due to its minimal invasiveness. Although two types of boron agents are clinically used, several issues persist in their delivery, including poor water solubility, instability in aqueous media, selectivity toward cancer cells, accumulation in cancer cells, retention time in tumor tissue, and efficiency in achieving the boron neutron capture reaction. Addressing these challenges, numerous groups have explored various boron agents to enhance the therapeutic benefits of BNCT. This review summarizes delivery platforms based on natural products for BNCT.

3.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37792507

RESUMEN

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Asunto(s)
Boranos , Terapia por Captura de Neutrón de Boro , Humanos , Liposomas , Terapia por Captura de Neutrón de Boro/métodos , Boro , Compuestos de Boro , Fructosa
4.
Glia ; 63(7): 1213-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25754956

RESUMEN

Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.


Asunto(s)
Quimiotaxis/fisiología , Citocinas/metabolismo , Microglía/fisiología , Fagocitosis/fisiología , Receptores Histamínicos H3/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Histamina/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptores Histamínicos H2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Neurochem ; 129(4): 591-601, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24471494

RESUMEN

Monoamine neurotransmitters should be immediately removed from the synaptic cleft to avoid excessive neuronal activity. Recent studies have shown that astrocytes and neurons are involved in monoamine removal. However, the mechanism of monoamine transport by astrocytes is not entirely clear. We aimed to elucidate the transporters responsible for monoamine transport in 1321N1, a human astrocytoma-derived cell line. First, we confirmed that 1321N1 cells transported dopamine, serotonin, norepinephrine, and histamine in a time- and dose-dependent manner. Kinetics analysis suggested the involvement of low-affinity monoamine transporters, such as organic cation transporter (OCT) 2 and 3 and plasma membrane monoamine transporter (PMAT). Monoamine transport in 1321N1 cells was not Na(+) /Cl(-) dependent but was inhibited by decynium-22, an inhibitor of low-affinity monoamine transporters, which supported the importance of low-affinity transporters. RT-PCR assays revealed that 1321N1 cells expressed OCT3 and PMAT but no other neurotransmitter transporters. Another human astrocytoma-derived cell line, U251MG, and primary human astrocytes also exhibited the same gene expression pattern. Gene-knockdown assays revealed that 1321N1 and primary human astrocytes could transport monoamines predominantly through PMAT and partly through OCT3. These results might indicate that PMAT and OCT3 in human astrocytes are involved in monoamine clearance.


Asunto(s)
Astrocitos/metabolismo , Monoaminas Biogénicas/metabolismo , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Astrocitoma/patología , Transporte Biológico , Línea Celular Tumoral , Perfilación de la Expresión Génica , Homeostasis , Humanos , Modelos Biológicos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA