Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Yakugaku Zasshi ; 144(6): 633-641, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825472

RESUMEN

Iron is necessary for all living organisms, and bacteria that cause infections in human hosts also need ferrous ions for their growth and proliferation. In the human body, most ferric ions (Fe3+) are tightly bound to iron-binding proteins such as hemoglobin, transferrin, lactoferrin, and ferritin. Pathogenic bacteria express highly specific iron uptake systems, including siderophores and specific receptors. Most bacteria secrete siderophores, which are low-molecular weight metal-chelating agents, to capture Fe3+ outside cell. Siderophores are mainly classified as either catecholate or hydroxamate. Vibrio vulnificus, a Gram-negative pathogenic bacterium, is responsible for serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In our study, we generated deletion mutants of the genes encoding proteins involved in the vulnibactin mediated iron-utilization system, such as ferric-vulnibactin receptor protein (VuuA), periplasmic ferric-vulnibactin binding protein (FatB), ferric-vulnibactin reductase (VuuB), and isochorismate synthase (ICS). ICS and VuuA are required under low-iron conditions for ferric-utilization in M2799, but the alternative proteins FatB and VuuB can function as a periplasmic binding protein and a ferric-chelate reductase, respectively. VatD, which functions as ferric-hydroxamate siderophores periplasmic binding protein, was shown to participate in the ferric-vulnibactin uptake system in the absence of FatB. Furthermore, the ferric-hydroxamate siderophore reductase IutB was observed to participate in ferric-vulnibactin reduction in the absence of VuuB. We propose that ferric-siderophore periplasmic binding proteins and ferric-chelate reductases represent potential targets for drug discovery in the context of infectious diseases.


Asunto(s)
Descubrimiento de Drogas , Hierro , Sideróforos , Hierro/metabolismo , Sideróforos/metabolismo , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/metabolismo , Terapia Molecular Dirigida , Ácidos Hidroxámicos/metabolismo , Proteínas de Unión a Hierro/metabolismo
2.
Mar Drugs ; 19(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34940709

RESUMEN

Vibrio vulnificus is a Gram-negative pathogenic bacterium that causes serious infections in humans and requires iron for growth. A clinical isolate, V. vulnificus M2799, secretes a catecholate siderophore, vulnibactin, that captures ferric ions from the environment. In the ferric-utilization system in V. vulnificus M2799, an isochorismate synthase (ICS) and an outer membrane receptor, VuuA, are required under low-iron conditions, but alternative proteins FatB and VuuB can function as a periplasmic-binding protein and a ferric-chelate reductase, respectively. The vulnibactin-export system is assembled from TolCV1 and several RND proteins, including VV1_1681. In heme acquisition, HupA and HvtA serve as specific outer membrane receptors and HupB is a sole periplasmic-binding protein, unlike FatB in the ferric-vulnibactin utilization system. We propose that ferric-siderophore periplasmic-binding proteins and ferric-chelate reductases are potential targets for drug discovery in infectious diseases.


Asunto(s)
Hierro/metabolismo , Vibrio vulnificus/metabolismo , Animales , Organismos Acuáticos , Iones , Proteínas de Unión Periplasmáticas/metabolismo , Vibrio vulnificus/genética
3.
Microb Pathog ; 46(3): 171-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19185608

RESUMEN

Vibrio vulnificus is an opportunistic marine bacterium that causes a serious, often fatal, infection in human. An important factor that determines the survival of V. vulnificus in the human body is the ability to acquire iron. The differential expression of proteins in whole-cell lysates of V. vulnificus M2799, a clinical isolate, was evaluated under iron-repleted and iron-depleted conditions during the early, mid and late logarithmic growth phases. A total of 32, 53 and 42 iron-regulated spots were detected by two-dimensional differential gel electrophoresis (2D-DIGE) in the early, mid and late logarithmic growth phases, respectively. Of these, 18 (early logarithmic growth phase), 31 (mid logarithmic growth phase) and 26 (late logarithmic growth phase) proteins were subsequently identified by matrix-assisted laser desorption/ionization-time of flight analysis. These proteins were classified into 10 functional categories, including inorganic ion transport and metabolism, carbohydrate transport and metabolism, and amino acid transport and metabolism. Based on this classification, the expression of proteins involved in the iron acquisition system increased from the early to the mid logarithmic growth phases, while that of proteins involved in other metabolic pathways increased from the mid to the late logarithmic growth phases. Furthermore, when the protein expression profile of the wild type bacterium was compared with that of the fur mutant grown under the iron-repleted condition, the expression of 18 proteins was found to be regulated by iron and Fur.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Hierro/metabolismo , Proteoma/análisis , Vibrio vulnificus/química , Vibrio vulnificus/metabolismo , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Vibrio vulnificus/aislamiento & purificación , Vibrio vulnificus/fisiología
4.
Bioorg Med Chem ; 15(21): 6758-62, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17765550

RESUMEN

Previously, bioassay-guided separation led us to isolate eleven novel steroidal alkaloids named cortistatins from the marine sponge Corticium simplex. These cortistatins were classified into three types based on the chemical structure of the side chain part, that is, isoquinoline, N-methyl piperidine or 3-methylpyridine units. From the structure-activity relationship study, the isoquinoline unit in the side chain was found to be crucial for the anti-angiogenic activity of cortistatins. Cortistatin A (1) showed cytostatic growth-inhibitory activity against human umbilical vein endothelial cells (HUVECs). Cortistatin A (1) also inhibited VEGF-induced migration of HUVECs and bFGF-induced tubular formation. Although cortistatin A (1) showed no effect on VEGF-induced phosphorylation of ERK1/2 and p38, which are one of the signaling pathways for migration and tubular formation, the phosphorylation of the unidentified 110kDa protein in HUVECs was inhibited by the treatment with cortistatin A.


Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Citostáticos/química , Citostáticos/farmacología , Endotelio Vascular/efectos de los fármacos , Poríferos/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Inhibidores de la Angiogénesis/aislamiento & purificación , Animales , Movimiento Celular/efectos de los fármacos , Citostáticos/aislamiento & purificación , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Esteroides/química , Esteroides/aislamiento & purificación , Esteroides/farmacología , Relación Estructura-Actividad , Venas Umbilicales/citología , Venas Umbilicales/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología
5.
Infect Immun ; 75(9): 4592-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17591793

RESUMEN

Vibrio vulnificus is an estuarine bacterium that can cause primary septicemia as well as serious wound infections. Generally, clinical isolates have a high lethal effect compared with environmental isolates. However, little is known about the mechanisms by which V. vulnificus causes disease. In this study, we compared the pathogenicity of a clinical isolate, strain M2799, with that of an environmental isolate, strain JCM3731. The clinical isolate showed 100 times higher lethality in mice than the environmental isolate. In strain M2799-inoculated mice, the number of macrophages decreased significantly, whereas there was no appreciable change in the number of macrophages in strain JCM3731-inoculated mice. The clinical isolate showed high cytotoxic activity, especially to macrophages, compared with the environmental isolate in vitro. The growth of the clinical isolate was almost completely inhibited in the presence of macrophages. Moreover, the survival rate of the clinical isolate-inoculated mice increased by recruitment of macrophages. These results indicate that V. vulnificus infection progresses by damage to macrophages during the early phase of infection.


Asunto(s)
Macrófagos/microbiología , Macrófagos/patología , Vibriosis/microbiología , Vibriosis/patología , Vibrio vulnificus/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Vibriosis/inmunología , Vibriosis/mortalidad , Vibrio vulnificus/crecimiento & desarrollo
6.
J Bacteriol ; 186(4): 1029-37, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14761997

RESUMEN

Streptomyces thermoviolaceus OPC-520 secretes two types of xylanases (StxI and StxII), an acetyl xylan esterase (StxIII), and an alpha-L-arabinofuranosidase (StxIV) in the presence of xylan. Xylan degradation products (mainly xylobiose) produced by the action of these enzymes entered the cell and were then degraded to xylose by an intracellular beta-xylosidase (BxlA). A gene cluster involved in xylanolytic system of the strain was cloned and sequenced upstream of and including a BxlA-encoding gene (bxlA). The gene cluster consisted of four different open reading frames organized in the order bxlE, bxlF, bxlG, and bxlA. Reverse transcriptase PCR analysis revealed that the gene cluster is transcribed as polycistronic mRNA. The deduced gene products, comprising BxlE (a sugar-binding lipoprotein), BxlF (an integral membrane protein), and BxlG (an integral membrane protein), showed similarity to components of the bacterial ATP-binding cassette (ABC) transport system; however, the gene for the ATP binding protein was not linked to the bxl operon. The soluble recombinant BxlE protein was analyzed for its binding activity for xylooligosaccharides. The protein showed high-level affinity for xylobiose (K(d) = 8.75 x 10(-9) M) and for xylotriose (K(d) = 8.42 x 10(-8) M). Antibodies raised against the recombinant BxlE recognized the detergent-soluble BxlE isolated from S. thermoviolaceus membranes. The deduced BxlF and BxlG proteins are predicted to be integral membrane proteins. These proteins contained the conserved EAA loop (between the fourth and the fifth membrane-spanning segments) which is characteristic of membrane proteins from binding-protein-dependent ABC transporters. In addition, the bxlR gene located upstream of the bxl operon was cloned and expressed in Escherichia coli. The bxlR gene encoded a 343-residue polypeptide that is highly homologous to members of the GalR/LacI family of bacterial transcriptional regulators. The purified BxlR protein specifically bound to a 4-bp inverted sequence overlapping the -10 region of the bxl operon. The binding of BxlR to the site was inhibited specifically by low concentrations of xylobiose. This site was also present in the region located between stxI and stxIV and in the upstream region of stxII. BxlR specifically bound to the regions containing the inverted sequence. These results suggest that BxlR might act as a repressor of the genes involved not only in the uptake system of xylan degradation products but also in xylan degradation of S. thermoviolaceus OPC-520.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Disacáridos/metabolismo , Familia de Multigenes , Streptomyces/genética , Transcripción Genética , Xilosidasas/genética , Secuencia de Aminoácidos , Clonación Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Streptomyces/metabolismo
7.
Biosci Biotechnol Biochem ; 67(10): 2167-75, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14586105

RESUMEN

We found a polyphenoloxidase (PPO) in the cell extract of Streptomyces lavendulae REN-7. About 0.8 mg of purified PPO was obtained from 200 g of the mycelia with a yield of 9.0%. REN-7-PPO showed broad substrate specificity toward various aromatic compounds. Moreover, this enzyme was capable of oxidation of syringaldazine, which is a specific substrate for laccase. Interestingly, REN-7-PPO retained its original activity after 20 min of incubation at even 70 degrees C. The gene encoding the PPO was cloned. Four copper-binding sites characteristics of laccases were contained in the deduced amino acid sequence. We constructed a high-level expression system of this gene in Escherichia coli. The properties of the recombinant enzyme were identical that of wild-type. In conclusion, this PPO is a thermostable laccase.


Asunto(s)
Lacasa/genética , Lacasa/aislamiento & purificación , Streptomyces/enzimología , Secuencia de Bases , Catecol Oxidasa , Estabilidad de Enzimas , Escherichia coli/genética , Hidrazonas/metabolismo , Lacasa/química , Datos de Secuencia Molecular , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA