Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Genet ; 9(5): e1003479, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23658529

RESUMEN

Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Chaperonas de Histonas/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Adenosina Trifosfatasas/genética , Cromatina , Factor 1 de Ensamblaje de la Cromatina/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Nucleosomas , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
2.
PLoS One ; 5(12): e14400, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21203591

RESUMEN

BACKGROUND: S-nitrosation--the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins--is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In this study, we characterized a redox-based mechanism by which N-nitroso-tryptophan residues in proteins may be denitrosated. METHODOLOGY/PRINCIPAL FINDINGS: The denitrosation of N-acetyl-nitroso Trp (NANT) by glutathione (GSH) required molecular oxygen and was inhibited by superoxide dismutase (SOD). Transnitrosation to form S-nitrosoglutathione (GSNO) was observed only in the absence of oxygen or presence of SOD. Protein denitrosation by GSH was studied using a set of mutant recombinant human serum albumin (HSA). Trp-214 and Cys-37 were the only two residues nitrosated by NO under aerobic conditions. Nitroso-Trp-214 in HSA was insensitive to denitrosation by GSH or ascorbate while denitrosation at Cys-37 was evident in the presence of GSH but not ascorbate. GSH-dependent denitrosation of Trp-214 was restored in a peptide fragment of helix II containing Trp-214. Finally, incubation of cell lysates with NANT revealed a pattern of protein nitrosation distinct from that observed with GSNO. CONCLUSIONS: We propose that the denitrosation of nitrosated Trp by GSH occurs through homolytic cleavage of nitroso Trp to NO and a Trp aminyl radical, driven by the formation of superoxide derived from the oxidation of GSH to GSSG. Overall, the accessibility of Trp residues to redox-active biomolecules determines the stability of protein-associated nitroso species such that in the case of HSA, N-nitroso-Trp-214 is insensitive to denitrosation by low-molecular-weight antioxidants. Moreover, RNNOs can generate free NO and transfer their NO moiety in an oxygen-dependent fashion, albeit site-specificities appear to differ markedly from that of RSNOs.


Asunto(s)
Nitrógeno/química , Oxidación-Reducción , Proteínas/química , Antioxidantes/química , Cisteína/química , Glutatión/metabolismo , Humanos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrosaminas/química , Oxígeno/química , Procesamiento Proteico-Postraduccional , S-Nitrosotioles/química , Albúmina Sérica/química , Transducción de Señal , Superóxido Dismutasa/metabolismo
3.
Mol Cell Biol ; 24(16): 7043-58, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15282305

RESUMEN

We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction.


Asunto(s)
Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Mutación , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , ARN Polimerasa II/aislamiento & purificación , ARN Polimerasa II/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/genética , ADN/metabolismo , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosfoproteínas Fosfatasas/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , Subunidades de Proteína/genética , ARN Polimerasa II/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/aislamiento & purificación , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/aislamiento & purificación , Factores de Transcripción TFII/metabolismo , Transcripción Genética
4.
Mol Cell ; 13(2): 225-39, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14759368

RESUMEN

A remarkably large collection of evolutionarily conserved proteins has been implicated in processing of noncoding RNAs and biogenesis of ribonucleoproteins. To better define the physical and functional relationships among these proteins and their cognate RNAs, we performed 165 highly stringent affinity purifications of known or predicted RNA-related proteins from Saccharomyces cerevisiae. We systematically identified and estimated the relative abundance of stably associated polypeptides and RNA species using a combination of gel densitometry, protein mass spectrometry, and oligonucleotide microarray hybridization. Ninety-two discrete proteins or protein complexes were identified comprising 489 different polypeptides, many associated with one or more specific RNA molecules. Some of the pre-rRNA-processing complexes that were obtained are discrete sub-complexes of those previously described. Among these, we identified the IPI complex required for proper processing of the ITS2 region of the ribosomal RNA primary transcript. This study provides a high-resolution overview of the modular topology of noncoding RNA-processing machinery.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Northern Blotting , Proteínas Fúngicas/química , Espectrometría de Masas , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA