Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 92020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31959282

RESUMEN

Far-red absorbing chlorophylls are constitutively present as chlorophyll (Chl) d in the cyanobacterium Acaryochloris marina, or dynamically expressed by synthesis of Chl f, red-shifted phycobiliproteins and minor amounts of Chl d via far-red light photoacclimation in a range of cyanobacteria, which enables them to use near-infrared-radiation (NIR) for oxygenic photosynthesis. While the biochemistry and molecular physiology of Chl f-containing cyanobacteria has been unraveled in culture studies, their ecological significance remains unexplored and no data on their in situ activity exist. With a novel combination of hyperspectral imaging, confocal laser scanning microscopy, and nanoparticle-based O2 imaging, we demonstrate substantial NIR-driven oxygenic photosynthesis by endolithic, Chl f-containing cyanobacteria within natural beachrock biofilms that are widespread on (sub)tropical coastlines. This indicates an important role of NIR-driven oxygenic photosynthesis in primary production of endolithic and other shaded habitats.


Asunto(s)
Clorofila/análogos & derivados , Cianobacterias , Rayos Infrarrojos , Fotosíntesis , Células Cultivadas , Clorofila/química , Clorofila/metabolismo , Cianobacterias/química , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Ecosistema , Sedimentos Geológicos/microbiología , Oxígeno/metabolismo , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Agua de Mar/microbiología
2.
Environ Sci Technol ; 51(24): 14155-14163, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29149570

RESUMEN

Tropical seagrasses are nutrient-limited owing to the strong phosphorus fixation capacity of carbonate-rich sediments, yet they form densely vegetated, multispecies meadows in oligotrophic tropical waters. Using a novel combination of high-resolution, two-dimensional chemical imaging of O2, pH, iron, sulfide, calcium, and phosphorus, we found that tropical seagrasses are able to mobilize the essential nutrients iron and phosphorus in their rhizosphere via multiple biogeochemical pathways. We show that tropical seagrasses mobilize phosphorus and iron within their rhizosphere via plant-induced local acidification, leading to dissolution of carbonates and release of phosphate, and via local stimulation of microbial sulfide production, causing reduction of insoluble Fe(III) oxyhydroxides to dissolved Fe(II) with concomitant phosphate release into the rhizosphere porewater. These nutrient mobilization mechanisms have a direct link to seagrass-derived radial O2 loss and secretion of dissolved organic carbon from the below-ground tissue into the rhizosphere. Our demonstration of seagrass-derived rhizospheric phosphorus and iron mobilization explains why seagrasses are widely distributed in oligotrophic tropical waters.


Asunto(s)
Hierro , Fósforo , Sedimentos Geológicos , Rizosfera , Sulfuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA