Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(7): 3535-3542, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015124

RESUMEN

MutL proteins are ubiquitous and play important roles in DNA metabolism. MutLγ (MLH1-MLH3 heterodimer) is a poorly understood member of the eukaryotic family of MutL proteins that has been implicated in triplet repeat expansion, but its action in this deleterious process has remained unknown. In humans, triplet repeat expansion is the molecular basis for ∼40 neurological disorders. In addition to MutLγ, triplet repeat expansion involves the mismatch recognition factor MutSß (MSH2-MSH3 heterodimer). We show here that human MutLγ is an endonuclease that nicks DNA. Strikingly, incision of covalently closed, relaxed loop-containing DNA by human MutLγ is promoted by MutSß and targeted to the strand opposite the loop. The resulting strand break licenses downstream events that lead to a DNA expansion event in human cell extracts. Our data imply that the mammalian MutLγ is a unique endonuclease that can initiate triplet repeat DNA expansions.


Asunto(s)
Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Reparación de la Incompatibilidad de ADN , Dimerización , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/química , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Expansión de Repetición de Trinucleótido
2.
Proc Natl Acad Sci U S A ; 115(28): 7314-7319, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941579

RESUMEN

MutLα (MLH1-PMS2 heterodimer), which acts as a strand-directed endonuclease during the initiation of eukaryotic mismatch repair, has been postulated to function as a zinc-dependent enzyme [Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P (2008) J Mol Biol 382:610-627]. We show that human MutLα copurifies with two bound zinc ions, at least one of which resides within the endonuclease active site, and that bound zinc is required for endonuclease function. Mutagenic action of the carcinogen cadmium, a known inhibitor of zinc-dependent enzymes, is largely due to selective inhibition of mismatch repair [Jin YH, et al. (2003) Nat Genet 34:326-329]. We show that cadmium is a potent inhibitor (apparent Ki ∼ 200 nM) of MutLα endonuclease and that cadmium inhibition is reversed by zinc. We also show that inhibition of mismatch repair in cadmium-treated nuclear extract is significantly reversed by exogenous MutLα but not by MutSα (MSH2-MSH6 heterodimer) and that MutLα reversal depends on integrity of the endonuclease active site. Exogenous MutLα also partially rescues the mismatch repair defect in nuclear extract prepared from cells exposed to cadmium. These findings indicate that targeted inhibition of MutLα endonuclease contributes to cadmium inhibition of mismatch repair. This effect may play a role in the mechanism of cadmium carcinogenesis.


Asunto(s)
Cadmio/química , Carcinógenos/química , Reparación de la Incompatibilidad de ADN , Inhibidores Enzimáticos/química , Proteínas MutL/química , Mutágenos/química , Multimerización de Proteína , Humanos , Proteínas MutL/metabolismo
3.
Angew Chem Int Ed Engl ; 55(30): 8490-501, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27198632

RESUMEN

DNA molecules are not completely stable, they are subject to chemical or photochemical damage and errors that occur during DNA replication resulting in mismatched base pairs. Through mechanistic studies Paul Modrich showed how replication errors are corrected by strand-directed mismatch repair in Escherichia coli and human cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/fisiología , Escherichia coli/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Metilación de ADN , Proteínas de Escherichia coli/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo
4.
J Assoc Genet Technol ; 42(1): 37-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27183258

RESUMEN

The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

5.
J Biol Chem ; 291(25): 13216-28, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129233

RESUMEN

Eukaryotic topoisomerase 2 (Top2) and one of its interacting partners, topoisomerase IIß binding protein 1 (TopBP1) are two proteins performing essential cellular functions. We mapped the interacting domains of these two proteins using co-immunoprecipitation and pulldown experiments with truncated or mutant Drosophila Top2 with various Ser-to-Ala substitutions. We discovered that the last 20 amino acids of Top2 represent the key region for binding with Mus101 (the Drosophila homolog of TopBP1) and that phosphorylation of Ser-1428 and Ser-1443 is important for Top2 to interact with the N terminus of Mus101, which contains the BRCT1/2 domains. The interaction between Mus101 and the Top2 C-terminal regulatory domain is phosphorylation-dependent because treatment with phosphatase abolishes their association in pulldown assays. The binding affinity of N-terminal Mus101 with a synthetic phosphorylated peptide spanning the last 25 amino acids of Top2 (with Ser(P)-1428 and Ser(P)-1443) was determined by surface plasmon resonance with a Kd of 0.57 µm In an in vitro decatenation assay, Mus101 can specifically reduce the decatenation activity of Top2, and dephosphorylation of Top2 attenuates this response. Next, we endeavored to establish a cellular system for testing the biological function of Top2-Mus101 interaction. Top2-silenced S2 cells rescued by Top2Δ20, Top2 with 20 amino acids truncated from the C terminus, developed abnormally high chromosome numbers, which implies that Top2-Mus101 interaction is important for maintaining the fidelity of chromosome segregation during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , ADN-Topoisomerasas de Tipo II/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Ciclo Celular , Línea Celular , Cromosomas de Insectos/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Cinetoplasto/fisiología , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
6.
J Biol Chem ; 289(8): 5074-82, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24403078

RESUMEN

DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.


Asunto(s)
Daño del ADN , Reparación del ADN , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Cinética , Ratones , Modelos Biológicos , Fosforilación , Proteína de Replicación A/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
7.
DNA Repair (Amst) ; 10(11): 1145-53, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21945626

RESUMEN

End-directed mismatch-provoked excision has been reconstituted in several purified systems. While 3'-directed excision displays a mismatch dependence similar to that observed in nuclear extracts (≈20-fold), the mismatch dependence of 5'-directed excision is only 3-4-fold, significantly less than that in extracts (8-10-fold). Utilizing a fractionation-based approach, we have isolated a single polypeptide that enhances mismatch dependence of reconstituted 5'-directed excision and have shown it to be identical to poly[ADP-ribose] polymerase 1 (PARP-1). Titration of reconstituted excision reactions or PARP-1-depleted HeLa nuclear extract with purified PARP-1 showed that the protein specifically enhances mismatch dependence of 5'-directed excision. Analysis of a set of PARP-1 mutants revealed that the DNA binding domain and BRCT fold contribute to the regulation of excision specificity. Involvement of the catalytic domain is restricted to its ability to poly(ADP-ribosyl)ate PARP-1 in the presence of NAD(+), likely through interference with DNA binding. Analysis of protein-protein interactions demonstrated that PARP-1 interacts with mismatch repair proteins MutSα, exonuclease 1, replication protein A (RPA), and as previously shown by others, replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) as well. The BRCT fold plays an important role in the interaction of PARP-1 with the former three proteins.


Asunto(s)
Disparidad de Par Base , Reparación de la Incompatibilidad de ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Línea Celular , Células HeLa , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
8.
Artículo en Inglés | MEDLINE | ID: mdl-21821902

RESUMEN

MutSß is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2-MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSß. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSß and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.


Asunto(s)
Proteína 2 Homóloga a MutS/química , Cristalización , Cristalografía por Rayos X , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/aislamiento & purificación , Mutación , Unión Proteica
9.
Mol Cell ; 39(1): 145-51, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603082

RESUMEN

DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.


Asunto(s)
Adenosina Trifosfatasas/química , Bacillus subtilis/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Reparación de la Incompatibilidad de ADN , Endonucleasas/química , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Zinc/metabolismo
10.
Proc Natl Acad Sci U S A ; 107(30): 13384-9, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20624957

RESUMEN

The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Adenosina Trifosfatasas/genética , Animales , Células Cultivadas , Reparación de la Incompatibilidad de ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Endonucleasas/genética , Femenino , Fertilidad/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/genética , Linfoma/genética , Masculino , Ratones , Ratones Noqueados , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
J Biol Chem ; 284(47): 32782-91, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19783657

RESUMEN

We have examined function of the bacterial beta replication clamp in the different steps of methyl-directed DNA mismatch repair. The mismatch-, MutS-, and MutL-dependent activation of MutH is unaffected by the presence or orientation of loaded beta clamp on either 3' or 5' heteroduplexes. Similarly, beta is not required for 3' or 5' mismatch-provoked excision when scored in the presence of gamma complex or in the presence of gamma complex and DNA polymerase III core components. However, mismatch repair does not occur in the absence of beta, an effect we attribute to a requirement for the clamp in the repair DNA synthesis step of the reaction. We have confirmed previous findings that beta clamp interacts specifically with MutS and MutL (López de Saro, F. J., Marinus, M. G., Modrich, P., and O'Donnell, M. (2006) J. Biol. Chem. 281, 14340-14349) and show that the mutator phenotype conferred by amino acid substitution within the MutS N-terminal beta-interaction motif is the probable result of instability coupled with reduced activity in multiple steps of the repair reaction. In addition, we have found that the DNA polymerase III alpha catalytic subunit interacts strongly and specifically with both MutS and MutL. Because interactions of polymerase III holoenzyme components with MutS and MutL appear to be of limited import during the initiation and excision steps of mismatch correction, we suggest that their significance might lie in the control of replication fork events in response to the sensing of DNA lesions by the repair system.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Disparidad de Par Base , Reparación del ADN , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Western Blotting , Dominio Catalítico , ADN Polimerasa III/genética , Enzimas Reparadoras del ADN/metabolismo , ADN Superhelicoidal , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Escherichia coli/metabolismo , Técnicas In Vitro , Proteínas MutL , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
Proc Natl Acad Sci U S A ; 106(21): 8495-500, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19420220

RESUMEN

Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5' to 3' hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutL alpha-dependent and requires functional integrity of the MutL alpha endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutS alpha, MutL alpha, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase delta that supports Exo1-independent repair in vitro. Repair in this system depends on MutL alpha incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Animales , Línea Celular , ADN/genética , ADN/metabolismo , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Ratones , Ratones Noqueados
13.
Nucleic Acids Res ; 37(13): 4420-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19468048

RESUMEN

DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, thus ICL-inducing agents such as psoralen, are clinically useful chemotherapeutics. Psoralen-modified triplex-forming oligonucleotides (TFOs) have been used to target ICLs to specific genomic sites to increase the selectivity of these agents. However, how TFO-directed psoralen ICLs (Tdp-ICLs) are recognized and processed in human cells is unclear. Previously, we reported that two essential nucleotide excision repair (NER) protein complexes, XPA-RPA and XPC-RAD23B, recognized ICLs in vitro, and that cells deficient in the DNA mismatch repair (MMR) complex MutSbeta were sensitive to psoralen ICLs. To further investigate the role of MutSbeta in ICL repair and the potential interaction between proteins from the MMR and NER pathways on these lesions, we performed electrophoretic mobility-shift assays and chromatin immunoprecipitation analysis of MutSbeta and NER proteins with Tdp-ICLs. We found that MutSbeta bound to Tdp-ICLs with high affinity and specificity in vitro and in vivo, and that MutSbeta interacted with XPA-RPA or XPC-RAD23B in recognizing Tdp-ICLs. These data suggest that proteins from the MMR and NER pathways interact in the recognition of ICLs, and provide a mechanistic link by which proteins from multiple repair pathways contribute to ICL repair.


Asunto(s)
Daño del ADN , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Línea Celular , Reactivos de Enlaces Cruzados/química , ADN/química , Enzimas Reparadoras del ADN/metabolismo , Furocumarinas/química , Humanos , Proteína 3 Homóloga de MutS , Proteína de Replicación A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(44): 16906-11, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18971343

RESUMEN

The error-free repair of double-stranded DNA breaks by homologous recombination requires processing of broken ends. These processed ends are substrates for assembly of DNA strand exchange proteins that mediate DNA strand invasion. Here, we establish that human BLM helicase, a member of the RecQ family, stimulates the nucleolytic activity of human exonuclease 1 (hExo1), a 5'-->3' double-stranded DNA exonuclease. The stimulation is specific because other RecQ homologs fail to stimulate hExo1. Stimulation of DNA resection by hExo1 is independent of BLM helicase activity and is, instead, mediated by an interaction between the 2 proteins. Finally, we show that DNA ends resected by hExo1 and BLM are used by human Rad51, but not its yeast or bacterial counterparts, to promote homologous DNA pairing. This in vitro system recapitulates initial steps of homologous recombination and provides biochemical evidence for a role of BLM and Exo1 in the initiation of recombinational DNA repair.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN/química , Roturas del ADN de Doble Cadena , ADN Helicasas/química , ADN Helicasas/genética , Enzimas Reparadoras del ADN/química , Exodesoxirribonucleasas/química , Humanos , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Recombinación Genética , Proteína de Replicación A/metabolismo
15.
Clin Cancer Res ; 14(15): 4859-68, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18676759

RESUMEN

PURPOSE: A major mechanism of resistance to methylating agents, including temozolomide, is the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT). Preclinical data indicates that defective DNA mismatch repair (MMR) results in tolerance to temozolomide regardless of AGT activity. The purpose of this study was to determine the role of MMR deficiency in mediating resistance in samples from patients with both newly diagnosed malignant gliomas and those who have failed temozolomide therapy. EXPERIMENTAL DESIGN: The roles of AGT and MMR deficiency in mediating resistance in glioblastoma multiforme were assessed by immunohistochemistry and microsatellite instability (MSI), respectively. The mutation status of the MSH6 gene, a proposed correlate of temozolomide resistance, was determined by direct sequencing and compared with data from immunofluorescent detection of MSH6 protein and reverse transcription-PCR amplification of MSH6 RNA. RESULTS: Seventy percent of newly diagnosed and 78% of failed-therapy glioblastoma multiforme samples expressed nuclear AGT protein in > or = 20% of cells analyzed, suggesting alternate means of resistance in 20% to 30% of cases. Single loci MSI was observed in 3% of patient samples; no sample showed the presence of high MSI. MSI was not shown to correlate with MSH6 mutation or loss of MSH6 protein expression. CONCLUSIONS: Although high AGT levels may mediate resistance in a portion of these samples, MMR deficiency does not seem to be responsible for mediating temozolomide resistance in adult malignant glioma. Accordingly, the presence of a fraction of samples exhibiting both low AGT expression and MMR proficiency suggests that additional mechanisms of temozolomide resistance are operational in the clinic.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Disparidad de Par Base , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Reparación de la Incompatibilidad de ADN , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioma/tratamiento farmacológico , Glioma/genética , Adulto , Anciano , Anciano de 80 o más Años , Dacarbazina/farmacología , Femenino , Glioblastoma/genética , Humanos , Masculino , Persona de Mediana Edad , O(6)-Metilguanina-ADN Metiltransferasa/genética , Temozolomida
16.
J Biol Chem ; 283(19): 13310-9, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18326858

RESUMEN

We have examined the interaction parameters, conformation, and functional significance of the human MutSalpha(.) proliferating cell nuclear antigen (PCNA) complex in mismatch repair. The two proteins associate with a 1:1 stoichiometry and a K(D) of 0.7 microm in the absence or presence of heteroduplex DNA. PCNA does not influence the affinity of MutSalpha for a mismatch, and mismatch-bound MutSalpha binds PCNA. Small angle x-ray scattering studies have established the molecular parameters of the complex, which are consistent with an elongated conformation in which the two proteins associate in an end-to-end fashion in a manner that does not involve an extended unstructured tether, as has been proposed for yeast MutSalpha and PCNA ( Shell, S. S., Putnam, C. D., and Kolodner, R. D. (2007) Mol. Cell 26, 565-578 ). MutSalpha variants lacking the PCNA interaction motif are functional in 3'- or 5'-directed mismatch-provoked excision, but display a partial defect in 5'-directed mismatch repair. This finding is consistent with the modest mutability conferred by inactivation of the MutSalpha PCNA interaction motif and suggests that interaction of the replication clamp with other repair protein(s) accounts for the essential role of PCNA in MutSalpha-dependent mismatch repair.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencia de Aminoácidos , Fenómenos Biofísicos , Biofisica , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
17.
Mol Cell ; 29(1): 112-21, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18206974

RESUMEN

MutL alpha, the heterodimeric eukaryotic MutL homolog, is required for DNA mismatch repair (MMR) in vivo. It has been suggested that conformational changes, modulated by adenine nucleotides, mediate the interactions of MutL alpha with other proteins in the MMR pathway, coordinating the recognition of DNA mismatches by MutS alpha and the activation of MutL alpha with the downstream events that lead to repair. Thus far, the only evidence for these conformational changes has come from X-ray crystallography of isolated domains, indirect biochemical analyses, and comparison to other members of the GHL ATPase family to which MutL alpha belongs. Using atomic force microscopy (AFM), coupled with biochemical techniques, we demonstrate that adenine nucleotides induce large asymmetric conformational changes in full-length yeast and human MutL alpha and that these changes are associated with significant increases in secondary structure. These data reveal an ATPase cycle in which sequential nucleotide binding, hydrolysis, and release modulate the conformational states of MutL alpha.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Nucleótidos de Adenina/farmacología , Adenosina Trifosfatasas/efectos de los fármacos , Proteínas Portadoras/efectos de los fármacos , Enzimas Reparadoras del ADN/efectos de los fármacos , Proteínas de Unión al ADN/efectos de los fármacos , Microscopía de Fuerza Atómica , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Adenosina Difosfato/farmacología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/clasificación , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Adenilil Imidodifosfato/farmacología , Disparidad de Par Base , Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Dicroismo Circular , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Dimerización , Humanos , Hidrólisis , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Modelos Moleculares , Homólogo 1 de la Proteína MutL , Proteínas MutL , Unión Proteica , Conformación Proteica/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
18.
J Biol Chem ; 282(51): 37181-90, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17951253

RESUMEN

MutL homologs are crucial for mismatch repair and genetic stability, but their function is not well understood. Human MutLalpha (MLH1-PMS2 heterodimer) harbors a latent endonuclease that is dependent on the integrity of a PMS2 DQHA(X)2E(X)4E motif (Kadyrov, F. A., Dzantiev, L., Constantin, N., and Modrich, P. (2006) Cell 126, 297-308). This sequence element is conserved in many MutL homologs, including the PMS1 subunit of Saccharomyces cerevisiae MutLalpha, but is absent in MutL proteins from bacteria like Escherichia coli that rely on d(GATC) methylation for strand directionality. We show that yeast MutLalpha is a strand-directed endonuclease that incises DNA in a reaction that depends on a mismatch, yMutSalpha, yRFC, yPCNA, ATP, and a pre-existing strand break, whereas E. coli MutL is not. Amino acid substitution within the PMS1 DQHA(X)2E(X)4E motif abolishes yMutLalpha endonuclease activity in vitro and confers strong genetic instability in vivo, but does not affect yMutLalpha ATPase activity or the ability of the protein to support assembly of the yMutLalpha.yMutSalpha.heteroduplex ternary complex. The loaded form of yPCNA may play an important effector role in directing yMutLalpha incision to the discontinuous strand of a nicked heteroduplex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Reparación de la Incompatibilidad de ADN , Endonucleasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Complejos Multiproteicos/genética , Homólogo 1 de la Proteína MutL , Proteínas MutL , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
19.
Mol Cell ; 26(4): 579-92, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17531815

RESUMEN

Mismatch repair (MMR) ensures the fidelity of DNA replication, initiates the cellular response to certain classes of DNA damage, and has been implicated in the generation of immune diversity. Each of these functions depends on MutSalpha (MSH2*MSH6 heterodimer). Inactivation of this protein complex is responsible for tumor development in about half of known hereditary nonpolyposis colorectal cancer kindreds and also occurs in sporadic tumors in a variety of tissues. Here, we describe a series of crystal structures of human MutSalpha bound to different DNA substrates, each known to elicit one of the diverse biological responses of the MMR pathway. All lesions are recognized in a similar manner, indicating that diversity of MutSalpha-dependent responses to DNA lesions is generated in events downstream of this lesion recognition step. This study also allows rigorous mapping of cancer-causing mutations and furthermore suggests structural pathways for allosteric communication between different regions within the heterodimer.


Asunto(s)
Disparidad de Par Base , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Neoplasias del Colon/genética , Secuencia Conservada , Replicación del ADN , Humanos , Magnesio/metabolismo , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA