Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pak J Pharm Sci ; 35(1(Supplementary)): 209-217, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35228179

RESUMEN

1,2,4-triazoles are a major group of heterocyclic compounds. In the current work, a concise library of such triazoles synthesized through a multistep protocol. The synthesis involved hydrazinolysis of ethyl-2-(p-Cl-phenoxy) acetate followed by reflux with phenyl isothiocyanate to yield the intermediate 2-[2-(p-Cl-phenoxy)acetyl)-N-phenyl-hydrazinecarbothioamide. This intermediate was then cyclized to form 5-[p-(Cl-phenoxy)-methyl]-4-phenyl-4H-1,2,4-triazole-3-thiol (the parent moiety) at alkaline pH. In parallel, 3-bromopropionyl bromide was reacted with a series of phenylamines to yield N-(substituted-phenyl)bromopropanamides. In the final step, N-substitution of 5-[p-(Cl-phenoxy)-methyl]-4- phenyl-4H-1,2,4-triazole-3-thiol was carried out with N-(substituted-phenyl)bromopropanamides to give desired library of 3-[5-[(p-Cl-phenoxy)-methyl]-4- phenyl-4H-1,2,4-triazole-3-ylthio]-N-(substituted-phenyl) propan-amides (8a-l). The prepared moieties were identified via IR, NMR, & EIMS and evaluated for urease and anti-proliferative activities. 3-[5-[(p-Cl-phenoxy)-methyl]-4- phenyl-4H-1,2,4-triazole-3-ylthio]-N-(3-methyl-phenyl)propanamide 8k, was found to be most prominent hit as urease inhibitor (IC50= 42.57± 0.13 µM) using thiourea as standard (IC50= 21.25±0.15µM). The interaction of 8k with urease were studied using docking studies. Anti-proliferative activity results showed 8k as promising candidates and rest of the synthesized derivatives were found to be moderately anti-proliferative. Molecular docking results also displayed 8k, 8h, and 8c as potential hits for further study.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Triazoles/síntesis química , Triazoles/farmacología , Ureasa/antagonistas & inhibidores , Células HCT116 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica , Ureasa/química
2.
Bioorg Chem ; 82: 253-266, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391856

RESUMEN

Overexpression of NTPDases leads to a number of pathological situations such as thrombosis, and cancer. Thus, effective inhibitors are required to combat these pathological situations. Different classes of NTPDase inhibitors are reported so far including nucleotides and their derivatives, sulfonated dyes such as reactive blue 2, suramin and its derivatives, and polyoxomatalates (POMs). Suramin is a well-known and potent NTPDase inhibitor, nonetheless, a range of side effects are also associated with it. Reactive blue 2 also had non-specific side effects that become apparent at high concentrations. In addition, most of the NTPDase inhibitors are high molecular weight compounds, always required tedious chemical steps to synthesize. Hence, there is still need to explore novel, low molecular weight, easy to synthesize, and potent NTPDase inhibitors. Keeping in mind the known NTPDase inhibitors with imine functionality and nitrogen heterocycles, Schiff bases of tryptamine, 1-26, were synthesized and characterized by spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C NMR. All the synthetic compounds were evaluated for the inhibitory avidity against activities of three major isoforms of NTPDases: NTPDase-1, NTPDase-3, and NTPDase-8. Cumulatively, eighteen compounds were found to show potent inhibition (Ki = 0.0200-0.350 µM) of NTPDase-1, twelve (Ki = 0.071-1.060 µM) of NTPDase-3, and fifteen compounds inhibited (Ki = 0.0700-4.03 µM) NTPDase-8 activity. As a comparison, the Kis of the standard inhibitor suramin were 1.260 ±â€¯0.007, 6.39 ±â€¯0.89 and 1.180 ±â€¯0.002 µM, respectively. Kinetic studies were performed on lead compounds (6, 5, and 21) with human (h-) NTPDase-1, -3, and -8, and Lineweaver-Burk plot analysis showed that they were all competitive inhibitors. In silico study was conducted on compound 6 that showed the highest level of inhibition of NTPDase-1 to understand the binding mode in the active site of the enzyme.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Apirasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Bases de Schiff/química , Triptaminas/química , Adenosina Trifosfatasas/aislamiento & purificación , Animales , Antígenos CD/química , Antígenos CD/aislamiento & purificación , Apirasa/química , Apirasa/aislamiento & purificación , Dominio Catalítico , Línea Celular , Chlorocebus aethiops , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/toxicidad , Humanos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Bases de Schiff/síntesis química , Bases de Schiff/toxicidad , Relación Estructura-Actividad , Triptaminas/síntesis química , Triptaminas/toxicidad
3.
Bioorg Chem ; 78: 17-23, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29525348

RESUMEN

Thymidine phosphorylase (TP) over expression plays role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. The inhibitor of this enzyme plays an important role in preventing the serious threat due to over expression of TP. In this regard, a series of seventeenanalogs of 3-formylcoumarin (1-17) were synthesized, characterized by 1HNMR and EI-MS and screened for thymidine phosphorylaseinhibitory activity. All analogs showed a variable degree of thymidine phosphorylase inhibition with IC50 values ranging between 0.90 ±â€¯0.01 and 53.50 ±â€¯1.20 µM when compared with the standard inhibitor 7-Deazaxanthine having IC50 value 38.68 ±â€¯1.12 µM. Among the series, fifteenanalogs such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17 showed excellent inhibition which is many folds better than the standard 7-Deazaxanthine whiletwo analogs 13 and 14 showed good inhibition. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl ring. Molecular docking study was carried out to understand the binding interaction of the most active analogs.


Asunto(s)
Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Timidina Fosforilasa/antagonistas & inhibidores , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Timidina Fosforilasa/metabolismo
4.
Bioorg Chem ; 70: 133-143, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28038777

RESUMEN

In this study, twenty-five (25) substituted aryl thiazoles (SAT) 1-25 were synthesized, and their in vitro cytotoxicity was evaluated against four cancer cell lines, MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast), HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard anticancer drug doxorubicin (IC50=1.56±0.05µM). Among them, compounds 1, 4-8, and 19 were found to be toxic to all four cancer cell lines (IC50 values 5.37±0.56-46.72±1.80µM). Compound 20 was selectively active against MCF7 breast cancer cells with IC50 of 40.21±4.15µM, whereas compound 19 was active against MCF7 and HeLa cells with IC50 of 46.72±1.8, and 19.86±0.11µM, respectively. These results suggest that substituted aryl thiazoles 1 and 4 deserve to be further investigated in vivo as anticancer leads.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Tiazoles/química , Tiazoles/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas Químicas Combinatorias/métodos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad , Tiazoles/síntesis química
5.
Bioorg Med Chem ; 16(6): 3456-61, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18280742

RESUMEN

A 3D-QSAR study has been performed on thirty (30) bis-coumarine derivatives to correlate their chemical structures with their observed urease inhibitory activity. Due to the absence of information on their active mechanism, comparative molecular field analysis (CoMFA) was used in the study. Two different properties: steric, electrostatic, assumed to cover the major contributions to ligand binding, were used to generate the 3D-QSAR model. Significant cross-validated correlation coefficients q(2) (0.558) and r(2) (0.992) for CoMFA were obtained, indicating the statistical significance of this class of compounds. The red electrostatic contour map highlighting those portion of compounds which may be interacting with nickel metal center in the active site of urease; while the blue contour map indicates positively charged groups in the ligands have improved biological activity and thus lower the IC(50)s. The steric contour map shows that bulkier substitutions at the 'R' position are detrimental to ligand receptor interaction. Actual urease inhibitory activities of this class and the predicted values were in good agreement with the experimental results. Moreover, from the contour maps, the key features vital to ligand binding have been identified, which are important for us to trace the important properties and gain insight into the potential mechanisms of intermolecular interactions between the ligand and receptor.


Asunto(s)
Antineoplásicos/química , Cumarinas/química , Cumarinas/farmacología , Relación Estructura-Actividad Cuantitativa , Ureasa/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cumarinas/síntesis química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Femenino , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA