Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Mol Med ; 12(9): 1125-41, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22804236

RESUMEN

In 1994 the first heat shock protein 90 (Hsp90) inhibitor was identified and Hsp90 was reported to be a target for anticancer therapeutics. In the past 18 years there have been 17 distinct Hsp90 inhibitors entered into clinical trial, and the small molecule Hsp90 inhibitors have been highly valuable as probes of the role of Hsp90 and its client proteins in cancer. Although no Hsp90 inhibitor has achieved regulatory approval, recently there has been significant progress in Hsp90 inhibitor clinical development, and in the past year RECIST responses have been documented in HER2-positive breast cancer and EML4-ALK-positive non-small cell lung cancer. All of the clinical Hsp90 inhibitors studied to date are specific in their target, i.e. they bind exclusively to Hsp90 and two related heat shock proteins. However, Hsp90 inhibitors are markedly pleiotropic, causing degradation of over 200 client proteins and impacting critical multiprotein complexes. Furthermore, it has only recently been appreciated that Hsp90 inhibitors can, paradoxically, cause transient activation of the protein kinase clients they are chaperoning, resulting in initiation of signal transduction and significant physiological events in both tumor and tumor microenvironment. An additional area of recent progress in Hsp90 research is in studies of the posttranslational modifications of Hsp90 itself and Hsp90 co-chaperone proteins. Together, a picture is emerging in which the impact of Hsp90 inhibitors is shaped by the tumor intracellular and extracellular milieu, and in which Hsp90 inhibitors impact tumor and host on a microenvironmental and systems level. Here we review the tumor intrinsic and extrinsic factors that impact the efficacy of small molecules engaging the Hsp90 chaperone machine.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias/metabolismo , Neoplasias/patología , Proteínas de Fusión Oncogénica/metabolismo , Receptor ErbB-2/metabolismo
2.
Mol Microbiol ; 42(4): 919-30, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11737636

RESUMEN

A factor influencing resistances of food spoilage microbes to sorbate and benzoate is whether these organisms are able to catalyse the degradation of these preservative compounds. Several fungi metabolize benzoic acid by the beta-ketoadipate pathway, involving the hydroxylation of benzoate to 4-hydroxybenzoate. Saccharomyces cerevisiae is unable to use benzoate as a sole carbon source, apparently through the lack of benzoate-4-hydroxylase activity. However a single gene from the food spoilage yeast Zygosaccharomyces bailii, heterologously expressed in S. cerevisiae cells, can enable growth of the latter on benzoate, sorbate and phenylalanine. Although this ZbYME2 gene is essential for benzoate utilization by Z. bailii, its ZbYme2p product has little homology to other fungal benzoate-4-hydroxylases studied to date, all of which appear to be microsomal cytochrome P450s. Instead, ZbYme2p has strong similarity to the matrix domain of the S. cerevisiae mitochondrial protein Yme2p/Rna12p/Prp12p and, when expressed as a functional fusion to green fluorescent protein in S. cerevisiae growing on benzoate, is largely localized to mitochondria. The phenotypes associated with loss of the native Yme2p from S. cerevisiae, mostly apparent in yme1,yme2 cells, may relate to increased detrimental effects of endogenous oxidative stress. Heterologous expression of ZbYME2 complements these phenotypes, yet it also confers a potential for weak acid preservative catabolism that the native S. cerevisiae Yme2p is unable to provide. Benzoate utilization by S. cerevisiae expressing ZbYME2 requires a functional mitochondrial respiratory chain, but not the native Yme1p and Yme2p of the mitochondrion.


Asunto(s)
Ácido Benzoico/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/metabolismo , Zygosaccharomyces/genética , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Antifúngicos/metabolismo , Microbiología de Alimentos , Conservantes de Alimentos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA