Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytopathology ; 113(9): 1716-1728, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37486151

RESUMEN

A previously uncharacterized torradovirus species infecting potatoes was detected by high-throughput sequencing from field samples from Peru and in customs intercepts in potato tubers that originated from South America in the United States of America and the Netherlands. This new potato torradovirus showed high nucleotide sequence identity to an unidentified isometric virus (SB26/29), which was associated with a disease named potato rugose stunting in southern Peru characterized over two decades ago. Thus, this virus is tentatively named potato rugose stunting virus (PotRSV). The genome of PotRSV isolates sequenced in this study were composed of two polyadenylated RNA segments. RNA1 ranges from 7,086 to 7,089 nt and RNA2 from 5,228 to 5,230 nt. RNA1 encodes a polyprotein containing the replication block (helicase-protease-polymerase), whereas RNA2 encodes a polyprotein cleaved into a movement protein and the three capsid proteins (CPs). Pairwise comparison among PotRSV isolates revealed amino acid identity values greater than 86% in the protease-polymerase (Pro-Pol) region and greater than 82% for the combined CPs. The closest torradovirus species, squash chlorotic leaf spot virus, shares amino acid identities of ∼58 and ∼41% in the Pro-Pol and the combined CPs, respectively. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , ARN Viral/genética , Perú , Genoma Viral , Enfermedades de las Plantas , Péptido Hidrolasas/genética , Poliproteínas/genética , Aminoácidos/genética , Trastornos del Crecimiento/genética
2.
Viruses ; 15(6)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376679

RESUMEN

Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco.


Asunto(s)
Bromoviridae , Caricaceae , Ilarvirus , Rhabdoviridae , Humanos , Viroma , Ilarvirus/genética , Plantas
3.
Plant Dis ; 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337443

RESUMEN

Weigela (Weigela florida (Bunge) A. DC., Family: Caprifoliaceae) are woody shrubs native to North China, Korea, and Japan. In the U.S., weigela are commonly used as landscape ornamental plants (McNamara et al. 2010). Two viruses have been reported in weigela: tomato spotted wilt orthotospovirus and impatiens necrotic spot orthotospovirus (Sastry et al. 2019). Ten weigela plants, originating from commercial nurseries in Minnesota, exhibiting chlorosis, chlorotic line patterns, and necrosis (e-Xtra) were submitted for virus diagnostics as potted plants at the University of Minnesota Plant Disease Clinic and the Virology Lab in 2019 and 2020 (five plants each year). Under greenhouse conditions, symptoms progressed from chlorosis to necrosis and even plant death in two of the five plants in 2019. Electron microscopy revealed rod-shaped particles of ≈20 nm in diameter and lengths between 40-200 nm with similar morphology to members of the genus Tobravirus (e-Xtra). Virus-like particles were enriched by ultracentrifugation and total nucleic acids were extracted from partial purifications using a phenol:chloroform extraction method (Lockhart et al. 1997). Tobacco rattle virus (TRV) was identified by cloning and sequencing of the 463bp amplicon obtained with the TRV detection primers described in Robinson, 1992. High-throughput sequencing (HTS) was done to confirm the TRV detection. A cDNA library was prepared from purified viral RNA using the TruSeq Stranded mRNA kit and sequenced on Illumina NovaSeq 6000 platform as 150 bp-paired end reads. A total of 44,316,446 raw data reads were obtained, preprocessed using the BBDuk plugin, and de novo assembled using SPAdes assembler. Viral contigs were identified using the NCBI BLASTX tool. The assembly of TRV RNA1 was 6,842 nt with 20,627,348 reads (47% of total reads) mapped to it and an average coverage per nucleotide at 323,639X. The assembly of TRV RNA2 was 3,033 nt with 22,769,253 reads (52% of total reads) mapped to it and an average coverage per nucleotide at 798,660X. NCBI GenBank accession numbers for the assemblies representing RNA1 and RNA2 are OQ408335 and OQ408336, respectively. NCBI BLASTn analysis showed the highest level of nucleotide identity to TRV genomic RNA segments 1 and 2, with 97% and 99% identity to the TRV isolate RNA1 (GQ903771) and RNA2 (GQ903772), respectively, that originated from Michigan potato. No other viral contigs were detected from the virion nucleic acid extraction by HTS, however this enrichment method doesn't exclude other viruses. In addition to using the detection primers by Robinson 1992, we designed primers based on our HTS data: TRV-WG-DetF3 5'- GACGAAGGAGGCTGTCATTGC-3' and TRV-WG-DetR3 5'-CGGACTATCGTGATGCCCATGC- 3'. RT-PCR amplicons from each of the 10 symptomatic plants were cloned and sequenced. Among these clones, Sanger sequence identities ranged between 96-100% compared to the HTS data and 98-99% to the TRV potato isolate from MI. To our knowledge, this is the first report of TRV infecting the ornamental host W. florida worldwide. TRV is a nematode-transmitted viral pathogen of economic importance, most notably in potatoes (Sastry et al. 2019). In the US, TRV has been reported on several landscape ornamentals, horticultural crops, and native habitats. Further research is needed to investigate the impact of TRV on the ornamental industry and the role of ornamentals as reservoirs for cultivated crops like potatoes.

4.
Arch Virol ; 167(8): 1717-1720, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35610515

RESUMEN

A new badnavirus was sequenced from fragrant pandan grass (Pandanus amaryllifolius) displaying mosaic and chlorosis on the leaves. The complete genome sequence was determined by high-throughput sequencing. The new badnavirus was tentatively named "pandanus mosaic associated virus" (PMaV). Similar to those of other members of the genus Badnavirus, the genome of PMaV consists of a circular DNA molecule of 7,481 bp with three open reading frames (ORF) potentially coding for three proteins. ORF3 encodes a polyprotein with conserved protein domains including zinc finger, trimeric dUTPase, aspartic protease, reverse transcriptase (RT), and RNase H domains. Pairwise comparisons of the highly conserved RT + RNase H region revealed the highest nucleotide (nt) sequence identity (70.71%) to taro bacilliform CH virus-Et17 (MG017324). In addition to PMaV, viral sequences corresponding to orchid fleck dichorhavirus (OFV) were detected in the same plant sample. The complete sequence of the OFV coding region shared >98% nt sequence identity with other isolates of OFV available in the GenBank database. Disease symptoms could not be attributed exclusively to PMaV or OFV, as both viruses were present in the pandan grass exhibiting mosaic and chlorosis.


Asunto(s)
Anemia Hipocrómica , Badnavirus , Pandanaceae , Anemia Hipocrómica/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Ribonucleasa H/genética
5.
Arch Virol ; 167(6): 1461-1466, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35469094

RESUMEN

A new potyvirus was found in Thevetia ahouai L. (Fam. Apocynaceae) plants exhibiting white spots on leaves and fruit discoloration in Ecuador. The complete genome sequences of two isolates of this virus, tentatively named "thevetia white spot virus" (ThWSV), were determined and found to be 9,912 (isolate 1) and 9,904 (isolate 2) nucleotides (nt) in length, each encoding a polyprotein of 363 kDa. Sequence comparisons between the two isolates showed 80 and 87% identity at the nt and amino acid (aa) level, respectively, whereas the overall sequence identity between ThWSV and its closest relative was 69% and 71% at the nt and aa level, respectively.


Asunto(s)
Potyvirus , Thevetia , Ecuador , Genoma Viral , Filogenia , Enfermedades de las Plantas , Potyvirus/genética , ARN Viral/genética
6.
Arch Virol ; 167(2): 631-634, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35028739

RESUMEN

The complete genome sequences of two isolates of spiraea yellow leafspot virus (SYLSV) were determined. Spiraea (Spiraea x bumalda) 'Anthony Waterer' plants showing virus-like symptoms including yellow spotting and leaf deformation were used for sequencing. The viral genome of SYLSV-MN (Minnesota) and SYLSV-MD (Maryland) is 8,017bp in length. The sequences share 95% identity at the nucleotide level. Both isolates have the same genome organization containing three open reading frames (ORFs), with ORF3 being the largest, encoding a putative polyprotein of 232 kDa with conserved domains including a zinc finger, pepsin-like aspartate protease, reverse transcriptase (RT), and RNase H. Pairwise comparisons between members of the genus Badnavirus showed that gooseberry vein banding associated virus GB1 (HQ852248) and rubus yellow net virus isolate Baumforth's Seedling A (KM078034) were the closest related virus sequences to SYLSV, sharing 73% identity at the nucleotide level. Bacilliform virions with dimensions of 150 nm × 30 nm were observed in virus preparations from symptomatic, but not asymptomatic, plants.


Asunto(s)
Badnavirus , Spiraea , Badnavirus/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas
7.
Front Microbiol ; 12: 684599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194416

RESUMEN

Maize stripe virus is a pathogen of corn and sorghum in subtropical and tropical regions worldwide. We used high-throughput sequencing to obtain the complete nucleotide sequence for the reference genome of maize stripe virus and to sequence the genomes of ten additional isolates collected from the United States or Papua New Guinea. Genetically, maize stripe virus is most closely related to rice stripe virus. We completed and characterized the RNA1 sequence for maize stripe virus, which revealed a large open reading frame encoding a putative protein with ovarian tumor-like cysteine protease, endonuclease, and RNA-dependent RNA polymerase domains. Phylogenetic and amino acid identity analyses among geographically diverse isolates revealed evidence for reassortment in RNA3 that was correlated with the absence of RNA5. This study yielded a complete and updated genetic description of the tenuivirus maize stripe virus and provided insight into potential mechanisms underpinning its diversity.

8.
Plant Dis ; 105(5): 1432-1439, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33048594

RESUMEN

In 2012, dormant canes of a proprietary wine grape (Vitis vinifera L.) accession were included in the collection of the University of California-Davis Foundation Plant Services. No virus-like symptoms were elicited when bud chips from propagated own-rooted canes of the accession were graft-inoculated onto a panel of biological indicators. However, chlorotic ringspot symptoms were observed on sap-inoculated Chenopodium amaranticolor Coste & A. Rein and C. quinoa Willd. plants, indicating the presence of a mechanically transmissible virus. Transmission electron microscopy of virus preparations from symptomatic C. quinoa revealed spherical, nonenveloped virions about 27 nm in diameter. Nepovirus-like haplotypes of sequence contigs were detected in both the source grape accession and symptomatic C. quinoa plants via high-throughput sequencing. A novel bipartite nepovirus-like genome was assembled from these contigs, and the termini of each RNA segment were verified by rapid amplification of complementary DNA ends assays. The RNA1 (7,186-nt) of the virus encodes a large polyprotein 1 of 231.1 kDa, and the RNA2 (4,460-nt) encodes a large polyprotein 2 of 148.9 kDa. Each of the polyadenylated RNA segments is flanked by 5'- (RNA1 = 156-nt; RNA2 = 170-nt) and 3'- (RNA1 = 834-nt; RNA2 = 261-nt) untranslated region sequences with >90% identities. Maximum likelihood phylogenetic analyses of the conserved Pro-Pol amino acid sequences revealed the clustering of the new virus within the genus Nepovirus of the family Secoviridae. Considering its biological and molecular characteristics, and based on current taxonomic criteria, we propose that the novel virus, named grapevine nepovirus A, be assigned to the genus Nepovirus.


Asunto(s)
Nepovirus , Vitis , Nepovirus/genética , Filogenia , Poliproteínas , ARN Viral/genética
9.
Plant Dis ; 103(6): 1391-1396, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31070546

RESUMEN

The genomic, biological, and serological characterization of tomato necrotic spot virus (ToNSV), a virus first described infecting tomato in California, was completed. The complete genomic sequence identified ToNSV as a new subgroup 1 ilarvirus distinct from the previously described tomato-infecting ilarviruses. We identified ToNSV in Indiana in 2017 and 2018 and in Ohio in 2018. The coat protein coding region of the isolates from California, Indiana, and Ohio have 94 to 98% identity, while the same isolates had 99% amino acid identity. ToNSV is serologically related to TSV, a subgroup 1 ilarvirus, and shows no serological relationship to ilarviruses in the other subgroups. In tomato, ToNSV caused symptoms of necrotic spots and flecks on leaves, necrotic streaking on stems, and necrotic spots and circular patterns on fruit resulting in a yield loss of 1 to 13%. These results indicate that ToNSV is a proposed new subgroup 1 ilarvirus causing a necrotic spotting disease of tomato observed in California, Indiana, and Ohio.


Asunto(s)
Ilarvirus , Filogenia , Solanum lycopersicum , Frutas/virología , Genoma Viral/genética , Ilarvirus/clasificación , Ilarvirus/genética , Ilarvirus/fisiología , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Estados Unidos
10.
PLoS One ; 13(9): e0203477, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30180217

RESUMEN

Viral infections of alfalfa are widespread in major cultivation areas and their impact on alfalfa production may be underestimated. A new viral species, provisionally named alfalfa virus F (AVF), was identified using a virion-associated nucleic acid (VANA) metagenomics-based approach in alfalfa (Medicago sativa L.) samples collected in Southern France. The nucleotide sequence of the viral genome was determined by de-novo assembly of VANA reads and by 5'/3' RACE with viral RNA extracted from enriched viral particles or with total RNA, respectively. The virus shares the greatest degree of overall sequence identity (~78%) with Medicago sativa marafivirus 1 (MsMV1) recently deduced from alfalfa transcriptomic data. The tentative nucleotide sequence of the AVF coat protein shares ~83% identity with the corresponding region of MsMV1. A sequence search of the predicted single large ORF encoding a polyprotein of 235kDa in the Pfam database resulted in identification of five domains, characteristic of the genus Marafivirus, family Tymoviridae. The AVF genome also contains a conserved "marafibox", a 16-nt consensus sequence present in all known marafiviruses. Phylogenetic analysis of the complete nucleotide sequences of AVF and other viruses of the family Tymoviridae grouped AVF in the same cluster with MsMV1. In addition to 5' and 3' terminal extensions, the identity of the virus was confirmed by RT-PCRs with primers derived from VANA-contigs, transmission electron microscopy with virus-infected tissues and transient expression of the viral coat protein gene using a heterologous virus-based vector. Based on the criteria demarcating species in the genus Marafivirus that include overall sequence identity less than 80% and coat protein identity less than 90%, we propose that AVF represents a distinct viral species in the genus Marafivirus, family Tymoviridae.


Asunto(s)
Virus del Mosaico de la Alfalfa , Genoma Viral , Medicago sativa/virología , Sistemas de Lectura Abierta , ARN Viral/genética , Tymoviridae , Proteínas Virales/genética , Virus del Mosaico de la Alfalfa/clasificación , Virus del Mosaico de la Alfalfa/genética , Virus del Mosaico de la Alfalfa/ultraestructura , Tymoviridae/clasificación , Tymoviridae/genética , Tymoviridae/ultraestructura
11.
Plant Dis ; 102(5): 911-918, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30673388

RESUMEN

Naranjilla ("little orange"), also known as lulo (Solanum quitoense Lam.), is a perennial shrub species cultivated in the Andes for fresh fruit and juice production. In 2015, a naranjilla plant exhibiting stunting, mosaic, and chlorotic spots was sampled in the Pastaza province of Ecuador and maintained under greenhouse conditions. An infectious agent was mechanically transmitted to indicator plants and was subjected to biological and molecular characterization. Spherical particles approximately 30 nm in diameter, composed of a single 20-kDa capsid protein, were observed under an electron microscope in infected naranjilla plants. High-throughput sequencing conducted on inoculated Nicotiana benthamiana plants produced a single sequence contig sharing the closest relationship with several tymoviruses. The entire 6,245-nucleotide genome of a new tymovirus was amplified using reverse-transcription polymerase chain reaction and resequenced with the Sanger methodology. The genome had three open reading frames typical of tymoviruses, and displayed a whole-genome nucleotide identity level with the closest tymovirus, Eggplant mosaic virus, at 71% (90% coverage). This tymovirus from naranjilla was able to systemically infect eggplant, tamarillo, N. benthamiana, and naranjilla. In naranjilla, it produced mosaic, chlorotic spots, and stunting, similar to the symptoms observed in the original plant. The virus was unable to infect potato and tobacco and unable to systemically infect pepper plants, replicating only in inoculated leaves. We concluded that this virus represented a new tymovirus infecting naranjilla, and proposed the tentative name Naranjilla chlorotic mosaic virus (NarCMV).


Asunto(s)
Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Solanum/virología , Tymovirus/genética , Genoma Viral , Filogenia
12.
Arch Virol ; 158(9): 1917-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23553457

RESUMEN

The complete genomic sequence of rose yellow mosaic virus (RoYMV) was determined and found to have all the features that are characteristic of members of the family Potyviridae. The RoYMV genome is 9508 nucleotides long excluding the 3'-poly-(A) tail and contains a single open reading frame encoding a polyprotein of 3067 amino acids. The RoYMV P3 and CI cistrons are shorter than those of other members of the family Potyviridae, and the 6K1 cistron is completely absent. Comparative sequence analysis revealed that RoYMV had highest amino acid sequence identity across the entire genome sequence to brome streak mosaic virus (33 %) and to turnip mosaic virus (30 %) at the coat protein level. Based on its low sequence similarity to known members of the family Potyviridae and phylogenetic analysis, RoYMV appears to be a distinct, previously undescribed, member of this family.


Asunto(s)
Genoma Viral/genética , Enfermedades de las Plantas/virología , Potyviridae/genética , Rosa/virología , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Filogenia , Potyviridae/clasificación , ARN Viral/genética , Proteínas Virales/química , Proteínas Virales/genética
13.
Plant Dis ; 91(6): 754-757, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30780486

RESUMEN

A filamentous virus identified in coleus (Coleus × hybrida) in Minnesota and New York was found to cause veinal necrosis in coleus, although this symptom was observed only under certain conditions. The virus was transmitted readily by mechanical inoculation to coleus and Nicotiana spp. and was not transmitted by Myzus persicae. The particles of the coleus virus had a modal length of 640 nm and a single capsid protein with an estimated molecular mass of 34 kDa. The amino acid sequence of the coat protein region of the coleus virus genome had significant similarities only to the corresponding domain of carlaviruses. Based on virion morphology, capsid protein size, genome size and organization, amino acid sequence, and phylogenetic analyses, the coleus virus, which was named provisionally Coleus vein necrosis virus (CVNV), was concluded to be a new definitive member of the genus Carlavirus. A 2-kb fragment of the 3' terminus of the CVNV genome sequence is accessible under accession number DQ915963 in GenBank.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA