Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuropsychopharmacology ; 43(5): 964-977, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28102227

RESUMEN

The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.


Asunto(s)
Cuerpo Estriado/metabolismo , Estructura Cuaternaria de Proteína , Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Animales , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Vías Nerviosas/metabolismo , Subunidades de Proteína/biosíntesis
2.
J Clin Invest ; 127(11): 4148-4162, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035280

RESUMEN

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.


Asunto(s)
Adipocitos/metabolismo , Metabolismo Energético , Macrófagos/fisiología , Receptor Cannabinoide CB1/fisiología , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Peso Corporal , Ingestión de Energía , Homeostasis , Activación de Macrófagos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inmunología , Obesidad/metabolismo , Especificidad de Órganos , Transcriptoma
3.
Brain Struct Funct ; 221(4): 2061-74, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-25772509

RESUMEN

The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/fisiología , Dronabinol/administración & dosificación , Dronabinol/análogos & derivados , Potenciales Postsinápticos Excitadores , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/fisiología , Ácido Kaínico/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Piramidales/fisiología , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/fisiología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
4.
Proc Natl Acad Sci U S A ; 108(27): 11256-61, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690345

RESUMEN

Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Receptor Cannabinoide CB1/fisiología , Animales , Encéfalo/citología , Recuento de Células , Femenino , Expresión Génica , Hipocampo/citología , Hipocampo/fisiología , Interleucina-6/genética , Interleucina-6/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/fisiología , Neuronas/citología , Neuronas/fisiología , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Convulsiones/patología , Convulsiones/fisiopatología , Ácido gamma-Aminobutírico/fisiología
5.
Cell Metab ; 11(4): 273-85, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20374960

RESUMEN

The endocannabinoid system (ECS) plays a critical role in obesity development. The pharmacological blockade of cannabinoid receptor type 1 (CB(1)) has been shown to reduce body weight and to alleviate obesity-related metabolic disorders. An unsolved question is at which anatomical level CB(1) modulates energy balance and the mechanisms involved in its action. Here, we demonstrate that CB(1) receptors expressed in forebrain and sympathetic neurons play a key role in the pathophysiological development of diet-induced obesity. Conditional mutant mice lacking CB(1) expression in neurons known to control energy balance, but not in nonneuronal peripheral organs, displayed a lean phenotype and resistance to diet-induced obesity. This phenotype results from an increase in lipid oxidation and thermogenesis as a consequence of an enhanced sympathetic tone and a decrease in energy absorption. In conclusion, CB(1) signaling in the forebrain and sympathetic neurons is a key determinant of the ECS control of energy balance.


Asunto(s)
Metabolismo Energético/fisiología , Obesidad/fisiopatología , Prosencéfalo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Sistema Nervioso Simpático/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal , Citrato (si)-Sintasa/metabolismo , ADN Mitocondrial/genética , Técnica del Anticuerpo Fluorescente , Hiperfagia/complicaciones , Immunoblotting , Hibridación in Situ , Ratones , Ratones Noqueados , Modelos Biológicos , Obesidad/etiología , Obesidad/metabolismo , Prosencéfalo/fisiología , Receptor Cannabinoide CB1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Termogénesis/fisiología , Microtomografía por Rayos X
6.
PLoS One ; 5(12): e15707, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21203567

RESUMEN

The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA)-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant adeno-associated virus (AAV) genome with a short stop element flanked by loxP sites, for highly efficient attenuation of transgene expression on the transcriptional level. The presence of Cre-recombinase is strictly necessary for expression of reporter proteins or CB1 receptor in vitro and in vivo. Transgenic CB1 receptor immunoreactivity is targeted to glutamatergic neurons after stereotaxic delivery of AAV to the dorsal hippocampus of the driver mice NEX-cre. Increased CB1 receptor protein levels in hippocampal lysates of AAV-treated Cre-mice is paralleled by enhanced cannabinoid-induced G-protein activation. KA-induced seizure severity and mortality is reduced in CB1 receptor overexpressors compared with AAV-treated control animals. Neuronal damage in the hippocampal CA3 field is specifically absent from AAV-treated Cre-transgenics, but evident throughout cortical areas of both treatment groups. Our data provide further evidence for a role of increased CB1 signaling in pyramidal hippocampal neurons as a safeguard against the adverse effects of excessive excitatory network activity.


Asunto(s)
Dependovirus/genética , Regulación de la Expresión Génica , Hipocampo/metabolismo , Integrasas/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Convulsiones/metabolismo , Animales , Conducta Animal , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Recombinación Genética , Transgenes
7.
J Neurosci ; 24(44): 9953-61, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15525780

RESUMEN

Endocannabinoids are crucial for the extinction of aversive memories, a process that considerably involves the amygdala. Here, we show that low-frequency stimulation of afferents in the lateral amygdala with 100 pulses at 1 Hz releases endocannabinoids postsynaptically from neurons of the basolateral amygdala of mice in vitro and thereby induces a long-term depression of inhibitory GABAergic synaptic transmission (LTDi) via a presynaptic mechanism. Lowering inhibitory synaptic transmission significantly increases the amplitude of excitatory synaptic currents in principal neurons of the central nucleus, which is the main output site of the amygdala. LTDi involves a selective mGluR1 (metabotropic glutamate receptor 1)-mediated calcium-independent mechanism and the activation of the adenylyl cyclase-protein kinase A pathway. LTDi is abolished by the cannabinoid type 1 (CB1) receptor antagonist SR141716A and cannot be evoked in CB1 receptor-deficient animals. LTDi is significantly enhanced in mice lacking the anandamide-degrading enzyme fatty acid amide hydrolase. The present findings show for the first time that mGluR activation induces a retrograde endocannabinoid signaling via activation of the adenylyl cyclase-protein kinase A pathway and the release of anandamide. Furthermore, the results indicate that anandamide decreases the activity of inhibitory interneurons in the amygdala. This disinhibition increases the activity of common output neurons and could provide a prerequisite for extinction by formation of new memory.


Asunto(s)
Amígdala del Cerebelo/fisiología , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Adenilil Ciclasas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Calcio/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al GTP/fisiología , Técnicas In Vitro , Lipoproteína Lipasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Inhibición Neural/fisiología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Fosfolipasas de Tipo C/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
Biochem J ; 380(Pt 1): 265-72, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-14969584

RESUMEN

Indirect evidence for the existence of a specific protein-mediated process for the cellular uptake of endocannabinoids has been reported, but recent results suggested that such a process, at least for AEA [ N -arachidonoylethanolamine (anandamide)], is facilitated uniquely by its intracellular hydrolysis by FAAH (fatty acid amide hydrolase) [Glaser, Abumrad, Fatade, Kaczocha, Studholme and Deutsch (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 4269-4274]. In the present study, we show that FAAH alone cannot account for the facilitated diffusion of AEA across the cell membrane. In particular, (i) using a short incubation time (90 s) to avoid AEA hydrolysis by FAAH, AEA accumulation into rat basophilic leukaemia or C6 cells was saturable at low microM concentrations of substrate and non-saturable at higher concentrations; (ii) time-dependent and, at low microM concentrations of substrate, saturable AEA accumulation was observed also using mouse brain synaptosomes; (iii) using synaptosomes prepared from FAAH-deficient mice, saturable AEA accumulation was still observed, although with a lower efficacy; (iv) when 36 AEA and N -oleoylethanolamine analogues, most of which with phenyl rings in the polar head group region, were tested as inhibitors of AEA cellular uptake, strict structural and stereochemical requirements were needed to observe significant inhibition, and in no case the inhibition of FAAH overlapped with the inhibition of AEA uptake; and (v) AEA biosynthesis by cells and sensory neurons was followed by AEA release, and this latter process, which cannot be facilitated by FAAH, was still blocked by an inhibitor of AEA uptake. We suggest that at least one protein different from FAAH is required to facilitate AEA transport across the plasma membrane in a selective and bi-directional way.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Proteínas Portadoras/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Transporte Biológico , Química Encefálica , Línea Celular Tumoral/metabolismo , Membrana Celular/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Endocannabinoides , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/citología , Humanos , Riñón/citología , Leucemia Basofílica Aguda/metabolismo , Leucemia Basofílica Aguda/patología , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Organofosfonatos/farmacología , Alcamidas Poliinsaturadas , Ratas , Sinaptosomas/metabolismo , Tapsigargina/farmacología
9.
Eur J Neurosci ; 16(1): 149-53, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12153540

RESUMEN

Nicotine addiction is a major public health issue. The use of laboratory animal models is a crucial tool in research aiming at understanding the pathophysiological mechanisms of nicotine dependence and at proposing new therapies. In rodents, cessation of nicotine exposure or administration of the nicotinic antagonist mecamylamine induces a nicotine withdrawal syndrome. Antagonist-precipitated withdrawal from other abused drugs such as opiates or cannabinoids has been associated with region-specific modifications of the activity of the cyclic AMP pathway. Here we show that mecamylamine-precipitated nicotine withdrawal in the rat is characterized by an increase in thigmotaxis (time spent in the periphery of an open field) that may be indicative of behavioural distress and can be associated with a selective up-regulation of adenylyl cyclase activity in the amygdala, a region implicated in the regulation of negative affect in response to aversive stimuli, including withdrawal. Adenylyl cyclase activity that is increased during precipitated nicotine withdrawal is stimulated by calcium/calmodulin, as is also the case for opioid and cannabinoid abstinence. This suggests that directly or indirectly mediated increases in the activity of the cyclic AMP pathway could constitute a possible common molecular mechanism underlying neuroadaptive changes following abstinence from different abused drugs.


Asunto(s)
Adenilil Ciclasas/metabolismo , Amígdala del Cerebelo/metabolismo , AMP Cíclico/metabolismo , Nicotina/efectos adversos , Estrés Psicológico/inducido químicamente , Síndrome de Abstinencia a Sustancias , Animales , Estimulantes Ganglionares/efectos adversos , Masculino , Mecamilamina/farmacología , Agonistas Nicotínicos/efectos adversos , Antagonistas Nicotínicos/farmacología , Ratas , Ratas Wistar , Transducción de Señal , Estrés Psicológico/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/psicología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA