Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Cell Rep ; 39(3): 110714, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35421379

RESUMEN

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.e., HNFL mice) co-engrafted with human fetal lung xenografts (fLX) and a myeloid-enhanced human immune system to identify cellular and molecular correlates of lung protection during SARS-CoV-2 infection. Unlike mice solely engrafted with human fLX, HNFL mice are protected against infection, severe inflammation, and histopathological phenotypes. Lung tissue protection from infection and severe histopathology associates with macrophage infiltration and differentiation and the upregulation of a macrophage-enriched signature composed of 11 specific genes mainly associated with the type I interferon signaling pathway. Our work highlights the HNFL model as a transformative platform to investigate, in controlled experimental settings, human myeloid immune mechanisms governing lung tissue protection during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Pulmón/patología , Macrófagos , Ratones , SARS-CoV-2
2.
Wound Repair Regen ; 29(6): 1024-1034, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34129265

RESUMEN

Vaping is suggested to be a risk factor for poor wound healing akin to smoking. However, the molecular and histologic mechanisms underlying this postulation remain unknown. Our study sought to compare molecular and histologic changes in cutaneous flap and non-flap tissue between vaping, smoking and control cohorts. Animal study of 15 male Sprague-Dawley rats was randomized to three cohorts: negative control (n = 5), e-cigarette (n = 5) and cigarette (n = 5) and exposed to their respective treatments with serum cotinine monitoring. After 30 days, random pattern flaps were raised and healed for 2 weeks after which skin punch biopsies of flap and non-flap tissues were collected for quantitative-reverse transcription-polymerase chain reaction of three selected wound healing genes (transforming growth factor ß [TGF-ß], vascular endothelial growth factor [VEGF], matrix metalloproteinase-1 [MMP-1]); then, immunohistochemistry for CD68 expression, α-smooth muscle actin looking at microvessel density (MVD) and in situ hybridization to localize VEGF production were undertaken. In flap tissue, vaping (mean[SEM]) (0.61[0.07]) and smoking (0.70[0.04]) were associated with decreased fold change of VEGF expression compared with controls (0.91[0.03]) (p < 0.05, p < 0.05, respectively). In non-flap tissue, only vaping was associated with decreased VEGF expression (mean[SEM]) (0.81[0.07]), compared with controls (1.17[0.10]) (p < 0.05) with expression primarily localized to basal keratinocytes and dermal capillaries. Immunohistochemistry showed decreased MVD in smoking (0.27[0.06]) and vaping (0.26[0.04]) flap tissue compared to matched controls (0.65[0.14]) (p < 0.05, p < 0.05, respectively) and decreased areas of fibrosis compared with controls on gross histology. Vaping and smoking were similarly associated with decreased VEGF expression, MVD and fibrotic changes in flap tissue. The results suggest attenuated angiogenesis via decreased VEGF expression as a mechanism for poor wound healing in vaping-exposed rats.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Masculino , Densidad Microvascular , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA