Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 42(13): e112198, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37278161

RESUMEN

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Asunto(s)
Neoplasias de la Próstata , Sodio , Masculino , Humanos , Sodio/metabolismo , Canales Iónicos/metabolismo , Transporte Iónico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Behav Sci (Basel) ; 12(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36004858

RESUMEN

Ceftriaxone (CTX) exerts a neuroprotective effect by decreasing glutamate excitotoxicity. We further studied the underlying mechanisms and effects of CTX early post-treatment on behavior in a cerebral hypoperfusion rats. The rats' common carotid arteries (2VO) were permanently ligated. CTX was treated after ischemia. Biochemical studies were performed to assess antioxidative stress and inflammation. Behavioral and histological studies were then tested on the ninth week after vessel ligation. The 2VO rats showed learning and memory deficits as well as working memory impairments without any motor weakness. The treatment with CTX was found to attenuate white matter damage, MDA production, and interleukin 1 beta and tumor necrosis factor alpha production, mainly in the hippocampal area. Moreover, CTX treatment could increase the expression of glia and the glial glutamate transporters, and the neuronal glutamate transporter. Taken together, our data indicate the neuroprotective mechanisms of CTX involving the upregulation of glutamate transporters' expression. This increased expression contributes to a reduction in glutamate excitotoxicity and oxidative stress as well as pro-inflammatory cytokine production, thus resulting in the protection of neurons and tissue from further damage. The present study highlights the mechanism of the effect of CTX treatment and of the underlying ischemia-induced neuronal damage.

3.
Cells ; 10(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209614

RESUMEN

The SCN4B gene, coding for the NaVß4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells has not been characterized. In this study, we demonstrated that reducing NaVß4 expression in MCF10A non-cancer mammary epithelial cells generated important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably, the loss of NaVß4 induced a complete loss of epithelial organisation in cysts and increased proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of ß-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, and α-SMA expression. Overall, our results suggest that Navß4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its downregulation might be a determining step in early carcinogenesis.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/citología , Subunidades de Proteína/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Línea Celular , Polaridad Celular , Regulación hacia Abajo , Células Epiteliales/citología , Femenino , Humanos , Mesodermo/metabolismo , Fenotipo , Proteolisis , beta Catenina/metabolismo
4.
J Biol Chem ; 290(26): 16168-76, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25931121

RESUMEN

Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser(423)-Pro(542)) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.


Asunto(s)
Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/metabolismo , Animales , Encéfalo/metabolismo , Canales de Calcio Tipo T/genética , Humanos , Neuronas/metabolismo , Estructura Secundaria de Proteína , Ratas , Ratas Wistar
5.
Am J Hum Genet ; 96(3): 462-73, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25683120

RESUMEN

Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s).


Asunto(s)
Contractura/genética , Extremidades/fisiopatología , Cara/anomalías , Hipotonía Muscular/genética , Canales de Sodio/genética , Artrogriposis/genética , Disostosis Craneofacial/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Exoma , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Canales Iónicos , Masculino , Proteínas de la Membrana , Mutación Missense , Canales de Sodio/metabolismo
6.
Front Cell Neurosci ; 8: 132, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904279

RESUMEN

Ion channels are crucial components of cellular excitability and are involved in many neurological diseases. This review focuses on the sodium leak, G protein-coupled receptors (GPCRs)-activated NALCN channel that is predominantly expressed in neurons where it regulates the resting membrane potential and neuronal excitability. NALCN is part of a complex that includes not only GPCRs, but also UNC-79, UNC-80, NLF-1 and src family of Tyrosine kinases (SFKs). There is growing evidence that the NALCN channelosome critically regulates its ion conduction. Both in mammals and invertebrates, animal models revealed an involvement in many processes such as locomotor behaviors, sensitivity to volatile anesthetics, and respiratory rhythms. There is also evidence that alteration in this NALCN channelosome can cause a wide variety of diseases. Indeed, mutations in the NALCN gene were identified in Infantile Neuroaxonal Dystrophy (INAD) patients, as well as in patients with an Autosomal Recessive Syndrome with severe hypotonia, speech impairment, and cognitive delay. Deletions in NALCN gene were also reported in diseases such as 13q syndrome. In addition, genes encoding NALCN, NLF- 1, UNC-79, and UNC-80 proteins may be susceptibility loci for several diseases including bipolar disorder, schizophrenia, Alzheimer's disease, autism, epilepsy, alcoholism, cardiac diseases and cancer. Although the physiological role of the NALCN channelosome is poorly understood, its involvement in human diseases should foster interest for drug development in the near future. Toward this goal, we review here the current knowledge on the NALCN channelosome in physiology and diseases.

7.
J Neurosci ; 28(17): 4501-11, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18434528

RESUMEN

Channelopathies are often linked to defective protein folding and trafficking. Among them, the calcium channelopathy episodic ataxia type-2 (EA2) is an autosomal dominant disorder related to mutations in the pore-forming Ca(v)2.1 subunit of P/Q-type calcium channels. Although EA2 is linked to loss of Ca(v)2.1 channel activity, the molecular mechanism underlying dominant inheritance remains unclear. Here, we show that EA2 mutants as well as a truncated form (D(I-II)) of the Ca(v)3.2 subunit of T-type calcium channel are misfolded, retained in the endoplasmic reticulum, and subject to proteasomal degradation. Pulse-chase experiments revealed that misfolded mutants bind to nascent wild-type Ca(v) subunits and induce their subsequent degradation, thereby abolishing channel activity. We conclude that this destructive interaction mechanism promoted by Ca(v) mutants is likely to occur in EA2 and in other inherited dominant channelopathies.


Asunto(s)
Sustitución de Aminoácidos/genética , Canales de Calcio/genética , Canales de Calcio/metabolismo , Pliegue de Proteína , Bloqueadores de los Canales de Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Canales de Calcio Tipo N/química , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Línea Celular , Línea Celular Tumoral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Humanos , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA