Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Polymers (Basel) ; 16(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065404

RESUMEN

The aquatic ecotoxicity of three α-amino acid-derived polyamidoamines (PAAs) was studied using zebrafish embryos as a viable vertebrate model organism. The PAAs examined were water-soluble amphoteric polyelectrolytes with a primarily negative charge, which were efficient flame retardants for cotton. The fish embryo acute toxicity test performed with PAA water solutions using 1.5-500 mg L-1 concentrations showed that toxicity did not statistically differ from the control. The survival rates were indeed >90%, even at the highest concentration; the hatching rates were >80%; and the numbers of morphological defects were comparable to those of the control. Tests using transgenic zebrafish lines indicated that the numbers of microscopic vascular and musculoskeletal defects were comparable to the control, with one random concentration showing doubled alterations. Sensory-motor tests in response to visual and tactile stimuli were also performed. In the presence of PAAs, embryos exposed to alternating light/dark cycles showed an insignificant mobility reduction during the dark phase. Touch-evoked response tests revealed a mild effect of PAAs on the neuromotor system at concentrations > 10 mg L-1. The cystine/glycine copolymer at 100 mg L-1 exhibited the greatest effect. Overall, the studied PAAs showed a minimal impact on aquatic systems and should be further considered as promising ecofriendly materials.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731859

RESUMEN

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Asunto(s)
Ácido Fólico , Compuestos Heterocíclicos con 3 Anillos , Oxazinas , Piperazinas , Piridonas , Pez Cebra , Animales , Compuestos Heterocíclicos con 3 Anillos/farmacología , Ácido Fólico/metabolismo , Oxazinas/farmacología , Piridonas/farmacología , Piperazinas/farmacología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Defectos del Tubo Neural/inducido químicamente , Neurogénesis/efectos de los fármacos , Femenino
3.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473215

RESUMEN

Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.

4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003490

RESUMEN

Autoimmune diseases are generally characterized by a multifactorial etiology and are often associated with a genetic predisposition. Both iron metabolism and the inflammatory cytokine system have been shown to play a pivotal role in the dysregulation of the immune response in many different autoimmune conditions, rheumatologic diseases included. The purpose of this work was to analyze the frequency of mutations altering the expression of IL-6 or influencing iron metabolism in patients affected by autoimmune diseases such as Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). In this study, 144 patients were enrolled: 77 and 67 patients were affected by RA and SLE, respectively. In these cohorts, the frequency of the IL-6 polymorphism -174G>C located in the IL-6 gene promoter was tested. Moreover, the frequencies of the three HFE gene variations associated with iron overload were analyzed: p.His63Asp, p.Ser65Cys and p.Cys282Tyr. The two mutations p.His63Asp and p.Ser65Cys in the HFE gene did not reach statistical significance in any of the comparisons, regardless of the statistical model, cohorts of patients and control populations analyzed. The frequencies of the p.Cys282Tyr mutation and the IL-6 polymorphism -174G>C were found to be overall significantly decreased in RA and SLE patients when the Dominant model and Allele contrast were adopted with both the Odds Ratio and Chi-square. Although further investigation is needed, the examination of the frequencies of the -174G>C IL-6 promoter polymorphism and HFE mutations may add some valuable information on the interplay linking iron metabolism, inflammation and immunity in autoimmune diseases such as SLE and RA.


Asunto(s)
Artritis Reumatoide , Lupus Eritematoso Sistémico , Humanos , Interleucina-6/genética , Predisposición Genética a la Enfermedad , Artritis Reumatoide/genética , Mutación , Lupus Eritematoso Sistémico/genética , Hierro , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Estudios de Casos y Controles , Proteína de la Hemocromatosis/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108275

RESUMEN

In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, ß1, µ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for µ1A, the polarized epithelial cells specific to µ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans-Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (µ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.


Asunto(s)
Trastornos del Neurodesarrollo , Factor de Transcripción AP-1 , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Humanos , Masculino , Ratones , Endosomas/metabolismo , Células Epiteliales/metabolismo , Isoformas de Proteínas/metabolismo , Red trans-Golgi/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Trastornos del Neurodesarrollo/genética , Factor de Transcripción AP-1/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139434

RESUMEN

In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Rabdomiosarcoma Embrionario , Animales , Niño , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Desoxiglucosa , Doxorrubicina/farmacología , Glucosa , Glucólisis , Hexoquinasa/metabolismo , Histonas/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Lovastatina , Inhibidores mTOR , Ácido Mevalónico , Oxidorreductasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/genética
7.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639177

RESUMEN

In this paper, we report the metabolic characterization of two foci, F1 and F3, obtained at the end of Cell Transformation Assay (CTA), performed by treating C3H10T1/2Cl8 mouse embryo fibroblasts with 1 µM CdCl2 for 24 h. The elucidation of the cadmium action mechanism can be useful both to improve the in vitro CTA and to yield insights into carcinogenesis. The metabolism of the two foci was investigated through Seahorse and enzyme activity assays; mitochondria were studied in confocal microscopy and reactive oxygen species were detected by flow cytometry. The results showed that F1 focus has higher glycolytic and TCA fluxes compared to F3 focus, and a more negative mitochondrial membrane potential, so that most ATP synthesis is performed through oxidative phosphorylation. Confocal microscopy showed mitochondria crowded in the perinuclear region. On the other hand, F3 focus showed lower metabolic rates, with ATP mainly produced by glycolysis and damaged mitochondria. Overall, our results showed that cadmium treatment induced lasting metabolic alterations in both foci. Triggered by the loss of the Pasteur effect in F1 focus and by mitochondrial impairment in F3 focus, these alterations lead to a loss of coordination among glycolysis, TCA and oxidative phosphorylation, which leads to malignant transformation.


Asunto(s)
Cadmio/toxicidad , Carcinogénesis/patología , Glucólisis , Mitocondrias/patología , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Células Cultivadas , Técnicas In Vitro , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C3H , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
8.
Cells ; 10(2)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669758

RESUMEN

Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Humanos , Pez Cebra
9.
Cancer Lett ; 507: 80-88, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33744390

RESUMEN

Vascular endothelial growth factor receptor 2 (VEGFR2) activating mutations are emerging as important oncogenic driver events. Understanding the biological implications of such mutations may help to pinpoint novel therapeutic targets. Here we show that activated VEGFR2 via the pro-oncogenic R1051Q mutation induces relevant metabolic changes in melanoma cells. The expression of VEGFR2R1051Q leads to higher energy metabolism and ATP production compared to control cells expressing VEGFR2WT. Furthermore, activated VEGFR2R1051Q augments the dependence on glutamine (Gln) of melanoma cells, thus increasing Gln uptake and their sensitivity to Gln deprivation and to inhibitors of glutaminase, the enzyme initiating Gln metabolism by cells. Overall, these results highlight Gln addiction as a metabolic vulnerability of tumors harboring the activating VEGFR2R1051Q mutation and suggest novel therapeutic approaches for those patients harboring activating mutations of VEGFR2.


Asunto(s)
Metabolismo Energético , Mutación con Ganancia de Función , Glutamina/metabolismo , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
Cancer Lett ; 505: 1-12, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33610729

RESUMEN

The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.


Asunto(s)
Caveolina 1/fisiología , Reparación del ADN , Estrés Oxidativo , Tolerancia a Radiación , Rabdomiosarcoma/radioterapia , Apoptosis , Línea Celular Tumoral , Humanos , Proteínas Proto-Oncogénicas c-akt/fisiología , Especies Reactivas de Oxígeno/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Familia-src Quinasas/fisiología
11.
Cancer Lett ; 496: 84-92, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035615

RESUMEN

In cancer genomics, recurrence of mutations in gene families that share homologous domains has recently emerged as a reliable indicator of functional impact and can be exploited to reveal the pro-oncogenic effect of previously uncharacterized variants. Pan-cancer analyses of mutation hotspots in the catalytic domain of a subset of tyrosine kinase receptors revealed that two infrequent mutations of VEGFR2 (R1051Q and D1052N) recur in analogous proteins and correlate with reduced patient survival. Functional validation showed that both R1051Q and D1052N mutations increase the enzymatic activity of VEGFR2. The expression of VEGFR2R1051Q potentiates the PI3K/Akt signaling axis in cancer cells, increasing their tumorigenic potential in vitro and in vivo. In addition, it confers to cancer cells an increased sensitivity to the VEGFR2-targeted tyrosine kinase inhibitor Linifanib. In the context of an efficacious application of anti-cancer targeted therapies, these findings indicate that the screening for uncharacterized mutations, like VEGFR2R1051Q, may help to predict patient prognosis and drug response, with significant clinical implications.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Melanoma/patología , Mutación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Tasa de Supervivencia , Células Tumorales Cultivadas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233823

RESUMEN

The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors' activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.


Asunto(s)
Antineoplásicos/farmacología , Cetuximab/farmacología , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neuraminidasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Receptores ErbB/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos
13.
Onco Targets Ther ; 12: 5257-5268, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31308696

RESUMEN

Liposarcoma is a malignant neoplasm of fat tissue. Well-differentiated and dedifferentiated liposarcoma (WDL/DDL) represent the two most clinically observed histotypes occurring in middle-aged to older adults, particularly within the retroperitoneum or extremities. WDL/DDL are thought to represent the broad spectrum of one disease, as they are both associated with the amplification in the chromosomal 12q13-15 region that causes MDM2 and CDK4 overexpression, the most useful predictor for liposarcoma diagnosis. In comparison to WDL, DDL contains additional genetic abnormalities, principally coamplifications of 1p32 and 6q23, that increase recurrence and metastatic rate. In this review, we discuss the xenograft and transgenic animal models generated for studying progression of WDL/DDL, highlighting utilities and pitfalls in such approaches that can facilitate or impede the development of new therapies.

14.
Biochem Biophys Res Commun ; 508(1): 31-36, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30466783

RESUMEN

The plasma membrane-associated sialidase NEU3 is known to play important roles in different physiological and pathophysiological processes such as proliferation, cellular differentiation and tumorigenesis. Up-regulation of NEU3 has been associated to several tumors and recently it was demonstrated that its down-modulation in glioblastoma cells promotes cell invasiveness. To date, no information concerning the possible role played by NEU3 in relation to tumor radioresistance is available. Here we show that overexpression of NEU3 in glioblastoma U87MG cells activates PI3K/Akt signaling pathway resulting in an increased radioresistance capacity and in an improved efficiency of double strand DNA-repair mechanisms after irradiation. Our results demonstrate for the first time that NEU3 contributes to the radioresistance features of U87MG cells, bringing to evidence a novel rand peculiar role of the enzyme in cancer biology.


Asunto(s)
Glioblastoma/metabolismo , Glioblastoma/radioterapia , Neuraminidasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/fisiología , Reparación del ADN/efectos de la radiación , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Neuraminidasa/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tolerancia a Radiación/genética , Tolerancia a Radiación/fisiología , Transducción de Señal , Regulación hacia Arriba
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(3): 620-633, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30593895

RESUMEN

Zebrafish (Danio rerio) has proven to be a versatile and reliable in vivo experimental model to study human hematopoiesis and hematological malignancies. As vertebrates, zebrafish has significant anatomical and biological similarities to humans, including the hematopoietic system. The powerful genome editing and genome-wide forward genetic screening tools have generated models that recapitulate human malignant hematopoietic pathologies in zebrafish and unravel cellular mechanisms involved in these diseases. Moreover, the use of zebrafish models in large-scale chemical screens has allowed the identification of new molecular targets and the design of alternative therapies. In this review we summarize the recent achievements in hematological research that highlight the power of the zebrafish model for discovery of new therapeutic molecules. We believe that the model is ready to give an immediate translational impact into the clinic.


Asunto(s)
Modelos Animales de Enfermedad , Hematología/métodos , Hematología/tendencias , Investigación Biomédica Traslacional , Pez Cebra/fisiología , Animales , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Hematológicas/patología , Hematopoyesis , Humanos , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/tendencias
16.
Future Med Chem ; 10(24): 2835-2854, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30539670

RESUMEN

Sialic acid is associated with glycoproteins and gangliosides of eukaryotic cells. It regulates various molecular interactions, being implicated in inflammation and cancer, where its expression is regulated by sialyltransferases and sialidases. Angiogenesis, the formation of new capillaries, takes place during inflammation and cancer, and represents the outcome of several interactions occurring at the endothelial surface among angiogenic growth factors, inhibitors, receptors, gangliosides and cell-adhesion molecules. Here, we elaborate on the evidences that many structures involved in angiogenesis are sialylated and that their interactions depend on sialic acid with implications in angiogenesis itself, inflammation and cancer. We also discuss the possibility to exploit sialic acid as a target for the development of novel antiangiogenic drugs.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Descubrimiento de Drogas , Terapia Molecular Dirigida , Ácido N-Acetilneuramínico/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/química , Animales , Descubrimiento de Drogas/métodos , Gangliósidos/metabolismo , Glicoproteínas/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida/métodos , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neovascularización Patológica/complicaciones , Neovascularización Patológica/metabolismo
17.
Br J Nutr ; 120(7): 751-762, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30105962

RESUMEN

7-Hydroxymatairesinol (7-HMR) is a plant lignan abundant in various concentrations in plant foods. The objective of this study was to test HMRLignan™, a purified form of 7-HMR, and the corresponding Picea abies extract (total extract P. abies; TEP) as dietary supplements on a background of a high-fat diet (HFD)-induced metabolic syndrome in mice and in the 3T3-L1 adipogenesis model. Mice, 3 weeks old, were fed a HFD for 60 d. Subgroups were treated with 3 mg/kg body weight 7-HMR (HMRLignan™) or 10 mg/kg body weight TEP by oral administration. 7-HMR and TEP limited the increase in body weight (-11 and -13 %) and fat mass (-11 and -18 %) in the HFD-fed mice. Epididymal adipocytes were 19 and -12 % smaller and the liver was less steatotic (-62 and -65 %). Serum lipids decreased in TEP-treated mice (-11 % cholesterol, -23 % LDL and -15 % TAG) and sugar metabolism was ameliorated by both lignan preparations, as shown by a more than 70 % decrease in insulin secretion and insulin resistance. The expression of several metabolic genes was modulated by the HFD with an effect that was reversed by lignan. In 3T3-L1 cells, the 7-HMR metabolites enterolactone (ENL) and enterodiol (END) showed a 40 % inhibition of cell differentiation accompanied by the inhibited expression of the adipogenic genes PPARγ, C/EBPα and aP2. Furthermore, END and ENL caused a 10 % reduction in TAG uptake in HEPA 1-6 hepatoma cells. In conclusion, 7-HMR and TEP reduce metabolic imbalances typical of the metabolic syndrome and obesity in male mice, whereas their metabolites inhibit adipogenesis and lipid uptake in vitro.


Asunto(s)
Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Lignanos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Picea/química , Células 3T3-L1 , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , 4-Butirolactona/uso terapéutico , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Suplementos Dietéticos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Expresión Génica , Resistencia a la Insulina , Lignanos/uso terapéutico , Lípidos/sangre , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
18.
Cancer Biomark ; 21(3): 591-601, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29278877

RESUMEN

BACKGROUND: Aberrant sialylation is a characteristic feature associated with cancer. The four types of mammalian sialidases identified to date have been shown to behave in different manners during carcinogenesis. While NEU1, NEU2 and NEU4 have been observed to oppose malignant phenotypes, the membrane-bound sialidase NEU3 was revealed to promote cancer progression. OBJECTIVES: With the aim of improving the knowledge about sialidases deregulation in various cancer types, we investigated the amount of NEU1, NEU3 and NEU4 transcripts in paired normal and tumor tissues from 170 patients with 11 cancer types. METHODS: mRNA was extracted from patients' tissue specimens and retrotranscribed into cDNA, which was quantified by Real-Time PCR. RESULTS: We found NEU1 and NEU3 to be up regulated, while NEU4 was down regulated in most cancer types. In particular, colorectal cancer tissues showed the highest increase in NEU3 expression. Both NEU1 and NEU3 showed a strong up-regulation in ovarian cancer. CONCLUSIONS: Our data show that human sialidases are expressed at different levels in healthy tissues and are strongly deregulated in tumors. Moreover, sialidases expression in our European cohort showed significant differences from Asian populations. Some of these peculiar features open potential applications of sialidases in cancer diagnosis and therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/enzimología , Neoplasias/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Familia de Multigenes , Neoplasias/patología , Isoformas de Proteínas
19.
PLoS One ; 12(10): e0187289, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29088281

RESUMEN

Adenocarcinoma of Non-Small Cell Lung Cancer (NSCLC) is a severe disease. Patients carrying EGFR mutations may benefit from EGFR targeted therapies (e.g.: gefitinib). Recently, it has been shown that sialidase NEU3 directly interacts and regulates EGFR. In this work, we investigate the effect of sialidase NEU3 overexpression on EGFR pathways activation and EGFR targeted therapies sensitivity, in a series of lung cancer cell lines. NEU3 overexpression, forced after transfection, does not affect NSCLC cell viability. We demonstrate that NEU3 overexpression stimulates the ERK pathway but this activation is completely abolished by gefitinib treatment. The Akt pathway is also hyper-activated upon NEU3 overexpression, but gefitinib is able only to decrease, and not to abolish, such activation. These findings indicate that NEU3 can act directly on the ERK pathway through EGFR and both directly and indirectly with respect to EGFR on the Akt pathway. Furthermore, we provide evidence that a healthy mucosa cell line (with EGFR wild-type gene sequence) is slightly sensitive to gefitinib, especially in the presence of NEU3 overexpression, thus hypothesizing that NEU3 overexpressing patients may benefit from EGFR targeted therapies also in absence of EGFR point mutations. Overall, the expression of NEU3 may be a novel diagnostic marker in NSCLC because, by its ability to stimulate EGFR downstream pathways with direct and indirect mechanisms, it may help in the identification of patients who can profit from EGFR targeted therapies in absence of EGFR activating mutations or from new combinations of EGFR and Akt inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/fisiología , Neuraminidasa/fisiología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Línea Celular Tumoral , Membrana Celular/enzimología , Electroforesis en Gel de Poliacrilamida , Gefitinib , Humanos , Neoplasias Pulmonares , Quinazolinas/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
20.
Biochemistry ; 56(48): 6401-6408, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29039925

RESUMEN

Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 µm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.


Asunto(s)
Membrana Celular/enzimología , Exosomas/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Neuraminidasa/metabolismo , Células HeLa , Humanos , Neuraminidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA