Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Biochem Pharmacol ; 224: 116252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701866

RESUMEN

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Resistencia a Antineoplásicos , Melanoma , Células Madre Neoplásicas , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt , Retinal-Deshidrogenasa , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Línea Celular Tumoral , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Retinal-Deshidrogenasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Pirimidinonas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Piridonas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Vemurafenib/farmacología , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa/genética , Antineoplásicos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fenotipo
2.
Phytother Res ; 38(6): 2641-2655, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488442

RESUMEN

Insufficient vessel maintenance adversely impacts patients in terms of tissue reperfusion following stroke or myocardial infarction, as well as during wound healing. Angiogenesis impairment is a feature typical of metabolic disorders acting at the cardiovascular level, such as diabetes. Therapeutic angiogenesis regulation offers promising clinical implications, and natural compounds as pro-angiogenic nutraceuticals hold valuable applications in regenerative medicine. By using cultured endothelial cells from human umbilical veins (HUVEC) we studied functional and molecular responses following exposure to erucin, a natural isothiocyanate derived from Brassicaceae plants and extracted from the seeds of rocket. Erucin (at nanomolar concentrations) promotes cell migration and tube formation, similar to vascular endothelial growth factor (VEGF), through mobilizing paxillin at endothelial edges. At the molecular level, erucin induces signaling pathways typical of angiogenesis activation, namely Ras, PI3K/AKT, and ERK1/2, leading to VEGF expression and triggering its autocrine production, as pharmacological inhibition of soluble VEGF and VEGFR2 dampens endothelial functions. Furthermore, erucin, alone and together with VEGF, preserves endothelial angiogenic functions under pathological conditions, such as those induced in HUVEC by high glucose (HG) exposure. Erucin emerges as a compelling candidate for therapeutic revascularization applications, showcasing promising prospects for natural compounds in regenerative medicine, particularly in addressing angiogenesis-related disorders.


Asunto(s)
Movimiento Celular , Glucosa , Células Endoteliales de la Vena Umbilical Humana , Isotiocianatos , Factor A de Crecimiento Endotelial Vascular , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Isotiocianatos/farmacología , Movimiento Celular/efectos de los fármacos , Paxillin/metabolismo , Inductores de la Angiogénesis/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Brassicaceae/química , Neovascularización Fisiológica/efectos de los fármacos , Sulfuros , Tiocianatos
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555238

RESUMEN

Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.


Asunto(s)
Endotelio Vascular , Transducción de Señal , Humanos , Ratones , Animales , Endotelio Vascular/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430601

RESUMEN

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Piel/metabolismo , Suturas , Queratinocitos/fisiología , Procedimientos Neuroquirúrgicos
5.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077778

RESUMEN

Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial-mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-ß1 (TGF-ß1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-ß1, and restoration of the epithelial marker E-cadherin, reduced by TGF-ß1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial-mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes.

6.
Int J Mol Med ; 50(1)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35656893

RESUMEN

ALDH1A1 is a cytosolic enzyme upregulated in tumor cells, involved in detoxifying cells from reactive aldehydes and in acquiring resistance to chemotherapeutic drugs. Its expression correlates with poor clinical outcomes in a number of cancers, including melanoma. The present study hypothesized that the increased ALDH1A1 expression and activity upregulated the release of proangiogenic factors from melanoma cells, which regulate angiogenic features in endothelial cells (ECs) through a rearrangement of the Notch pathway. In vivo, when subcutaneously implanted in immunodeficient mice, ALDH1A1 overexpressing melanoma cells displayed a higher microvessel density. In a 3D multicellular system, obtained co­culturing melanoma cancer cells with stromal cells, including ECs, melanoma ALDH1A1 overexpression induced the recruitment of ECs into the core of the tumorspheres. By using a genes array, overexpression of ALDH1A1 in tumor cells also promoted modulation of Notch cascade gene expression in ECs, suggesting an interaction between tumor cells and ECs mediated by enrichment of angiogenic factors in the tumor microenvironment. To confirm this hypothesis, inactivation of ALDH1A1 by the pharmacological inhibitor CM037 significantly affected the release of angiogenic factors, including IL­8, from melanoma cells. High levels of ALDH1A1, through the retinoic acid pathway, regulated the activation of NF­kB­p65 and IL­8. Further, in a 2D co­culture system, the addition of an IL­8 neutralizing antibody to ECs co­cultured with melanoma cells forced to express ALDH1A1 dampened endothelial angiogenic features, both at the molecular (in terms of gene and protein expression of mediators of the Notch pathway) and at the functional level (proliferation, scratch assay, tube formation and permeability). In conclusion, these findings demonstrated the existence of a link between melanoma ALDH1A1 expression and EC Notch signaling modification that results in a pro­angiogenic phenotype. Based on the crucial role of ALDH1A1 in melanoma control of the tumor microenvironment, the enzyme seems a promising target for the development of novel drugs able to interrupt the cross­talk between cancer (stem) cells and endothelial cells.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Células Endoteliales , Melanoma , Retinal-Deshidrogenasa , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Células Endoteliales/metabolismo , Interleucina-8/genética , Melanoma/genética , Melanoma/patología , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Receptores Notch , Retinal-Deshidrogenasa/genética , Transducción de Señal , Microambiente Tumoral
7.
Crit Rev Oncog ; 26(2): 39-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347972

RESUMEN

The problem of drug resistance in cancer patients has been well in mind from the beginning of modern medicine and oncology treatments with the so called conventional cytotoxic therapy. With the advent of target therapy against tumor angiogenesis and in particular against the vascular endothelial growth factor (VEGF)/VEGF receptor system, researchers thought that resistance could be no more a problem, since the low pattern of proliferation displayed by endothelial cells. However, beside the efficacy demonstrated by antiangiogenic drugs, resistance during prolonged drug treatments appears as a limiting feature. Nowadays, various mechanisms of resistance to antiangiogenic therapeutics have been discovered, either innate and depending on the host, or acquired by the tumor cells, especially as a consequence of induced hypoxia by antiangiogenic drugs and the redundancy of proangiogenic factors in the tumor microenvironment, and other forms of tumor neovascularization, than sprouting angiogenesis. Here, we have reviewed the preclinical and clinical evidence for mechanisms of resistance to antiangiogenic drugs reported so far. The knowledge of the mechanisms underneath antiangiogenic drug resistance could be of help in the choice of the more appropriate drug, the development of novel therapeutic strategies, the design of proper drug combination protocols or new formulations of antiangiogenic strategies.


Asunto(s)
Inhibidores de la Angiogénesis , Resistencia a Antineoplásicos , Neoplasias , Inhibidores de la Angiogénesis/farmacología , Células Endoteliales , Humanos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
8.
Biomedicines ; 9(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809724

RESUMEN

The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. To study the cellular and molecular events associated with the anti-inflammatory activity of PBMT by a dual-wavelength NIR laser source, human dermal fibroblasts were exposed to a mix of inflammatory cytokines (IL-1ß and TNF-α) followed by laser treatment once a day for three days. Inducible inflammatory key enzymatic pathways, as iNOS and COX-2/mPGES-1/PGE2, were upregulated by the cytokine mix while PBMT reverted their levels and activities. The same behavior was observed with the proangiogenic factor vascular endothelial growth factor (VEGF), involved in neovascularization of granulation tissue. From a molecular point of view, PBMT retained NF-kB cytoplasmatic localization. According to a change in cell morphology, differences in expression and distribution of fundamental cytoskeletal proteins were observed following treatments. Tubulin, F-actin, and α-SMA changed their organization upon cytokine stimulation, while PBMT reestablished the basal localization. Cytoskeletal rearrangements occurring after inflammatory stimuli were correlated with reorganization of membrane α5ß1 and fibronectin network as well as with their upregulation, while PBMT induced significant downregulation. Similar changes were observed for collagen I and the gelatinolytic enzyme MMP-1. In conclusion, the present study demonstrates that the proposed NIR laser therapy is effective in controlling fibroblast activation induced by IL-1ß and TNF-α, likely responsible for a deleterious effect of persistent inflammation.

9.
Pharmacol Res ; 159: 104964, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485281

RESUMEN

The vascular endothelium is one of the first barriers encountered by drugs and xenobiotics, which, once administered, enter the blood stream and diffuse to all organs through blood vessels. The continuous exposure of endothelial cells to drugs and chemical compounds turns out to be a huge risk for the cardiovascular system, as these substances could compromise endothelial vitality and function and create irreparable, localized or systemic damages. For this reason, a special attention should be paid to the safety of developing drugs on the cardiovascular system. In this study we focused our attention on carbonic anhydrase (CA)-IX inhibitors. CA-IX is an enzyme over-expressed in tumor cells in response to hypoxia, which is involved in pH control of the neoplastic mass microenvironment and in tumor progression. Specifically, we evaluated the safety on human umbilical vein endothelial cells (HUVEC) of CA-IX inhibitor AA-06-05, compared to its lead compound SLC-0111, for which the efficacy on tumor cells has already been proven. In this analysis we detected an impairment in viability and mitochondrial metabolism of HUVECs treated with AA-06-05 (but not with SLC-0111) in the concentration range 1-10 µM. These data were accompanied by an increase in the expression of the cell cycle negative regulator, p21, and a down-regulation of the pro-survival proteins ERK1/2 and AKT, both in their phosphorylated and total forms. The data obtained document the likelihood for CA-IX inhibitor AA-06-05 to be developed as new anticancer drug, but a particular attention should be paid to its potential side effects on endothelial cells due to its targeting on other CA isoforms as CA-I, with ubiquitous localization and physiological significance.


Asunto(s)
Antineoplásicos/farmacología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Sulfonamidas/farmacología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/toxicidad , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/toxicidad , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Compuestos de Fenilurea/toxicidad , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sulfonamidas/toxicidad , Factor A de Crecimiento Endotelial Vascular/farmacología
10.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340282

RESUMEN

Carbonic anhydrase IX (CA-IX) plays a pivotal role in regulation of pH in tumor milieu catalyzing carbonic acid formation by hydrating CO2. An acidification of tumor microenvironment contributes to tumor progression via multiple processes, including reduced cell-cell adhesion, increased migration and matrix invasion. We aimed to assess whether the pharmacological inhibition of CA-IX could impair tumor cell proliferation and invasion. Tumor epithelial cells from breast (MDA-MB-231) and lung (A549) cancer were used to evaluate the cytotoxic effect of sulfonamide CA-IX inhibitors. Two CA-IX enzyme blockers were tested, SLC-0111 (at present in phase Ib clinical trial) and AA-06-05. In these cells, the drugs inhibited cell proliferation, migration and invasion through shifting of the mesenchymal phenotype toward an epithelial one and by impairing matrix metalloprotease-2 (MMP-2) activity. The antitumor activity was elicited via apoptosis pathway activation. An upregulation of p53 was observed, which in turn regulated the activation of caspase-3. Inhibition of proteolytic activity was accompanied by upregulation of the endogenous tissue inhibitor TIMP-2. Collectively, these data confirm the potential use of CA-IX inhibitors, and in particular SLC-0111 and AA-06-05, as agents to be further developed, alone or in combination with other conventional anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Apoptosis/efectos de los fármacos , Anhidrasa Carbónica IX/genética , Anhidrasa Carbónica IX/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Expresión Génica , Humanos , Isoenzimas , Metaloproteinasa 2 de la Matriz
11.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936443

RESUMEN

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.


Asunto(s)
Modelos Biológicos , Plasma Rico en Plaquetas/metabolismo , Ingravidez , Cicatrización de Heridas , Animales , Recuento de Células , Movimiento Celular/genética , Colágeno/metabolismo , Elasticidad , Regulación de la Expresión Génica , Sanguijuelas/fisiología , Ratones , Células 3T3 NIH , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Cancer Drug Resist ; 3(1): 26-37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35582039

RESUMEN

Cancer is the second leading cause of death worldwide. The survival of cancer patients depends on the efficacy of therapies and the development of resistance. There are many mechanisms involved in the acquisition of drug resistance by cancer cells, including the acquisition of stem-like features. Cancer stem cells (CSCs) represent a major source of tumor progression and treatment resistance. CSCs are a subpopulation of cancer cells having the abilities to self-renew and form spheres in vitro. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a cytosolic enzyme involved in the detoxification of cells from toxic aldehydes and belongs to the ALDH family. High ALDH1A1 activity is closely related to stemness phenotype of several tumors, possibly contributing to cancer progression and diffusion in the body. We have documented the contribution of ALDH1A1 in tumor angiogenesis in breast cancer cells by the activation of hypoxia inducible factor-1α and vascular endothelial growth factor signaling. This review discusses the involvement of ALDH1A1 in the development of different hallmarks of cancer to propose it as a novel putative target for cancer treatment to achieve better outcome. Here, we analyze the involvement of ALDH1A1 in the acquisition of stemness phenotype in tumor cells, the regulation of tumor angiogenesis and metastases, and the acquisition of anticancer drug resistance and immune evasion.

13.
Eur J Nutr ; 59(2): 517-527, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30725211

RESUMEN

PURPOSE: Endothelial-to-mesenchymal transition (EndMT) plays an important role in pathogenesis of a number of inflammatory diseases. Hydroxytyrosol (HT) and, particularly, its major plasma metabolite HT-3O sulfate (HT-3Os) are known olive oil antioxidant and anti-inflammatory polyphenols which exert benefits against vascular diseases by improving endothelial function. However, to date the HT-3Os role in EndMT is not well known. METHODS: To investigate the HT-3Os effects on EndMT in the inflamed endothelium, we used an in vitro model of endothelial dysfunction, challenging endothelial cells (EC), human umbilical EC (HUVEC) and human retinal EC (HREC) with Interleukin-1ß (IL-1ß), an inflammatory agent. HREC were used as a specific model to investigate HT-3Os effects on vascular retinal diseases. RESULTS: We found that IL-1ß treatment-induced EndMT phenotype in both cell models, also changing cell morphology. HT-3Os protected EC against IL-1ß effects, recovering cell morphology and phenotype. Mechanistically, HT-3Os targeting fibroblast growth factor receptor 1 FGFR1 expression and let-7 miRNA, controlled transforming growth factor beta (TGF-ß) signalling in EC, downregulating transcription factors expression (SNAI1 and ZEB2) and gene expression of late EndMT markers (FN1, VIM, NOTCH3, CNN1, MMP2 and MMP9). CONCLUSION: These results demonstrate that HT-3Os blunts pathological EndMT in inflamed EC, maintaining high let-7 miRNA expression and preventing activation of TGF-ß signalling.


Asunto(s)
Endotelio/efectos de los fármacos , Endotelio/fisiopatología , Inflamación/fisiopatología , Mesodermo/efectos de los fármacos , Mesodermo/fisiopatología , Alcohol Feniletílico/análogos & derivados , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Células Cultivadas , Técnicas In Vitro , Alcohol Feniletílico/farmacología , Sulfatos
14.
Cancers (Basel) ; 11(12)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817719

RESUMEN

Melanoma and non-small-cell lung carcinoma (NSCLC) cell lines are characterized by an intrinsic population of cancer stem-like cells (CSC), and high expression of detoxifying isozymes, the aldehyde dehydrogenases (ALDHs), regulating the redox state. In this study, using melanoma and NSCLC cells, we demonstrate that ALDH3A1 isozyme overexpression and activity is closely associated with a highly aggressive mesenchymal and immunosuppressive profile. The contribution of ALDH3A1 to the stemness and immunogenic status of melanoma and NSCLC cells was evaluated by their ability to grow in 3D forming tumorspheres, and by the expression of markers for stemness, epithelial to mesenchymal transition (EMT), and inflammation. Furthermore, in specimens from melanoma and NSCLC patients, we investigated the expression of ALDH3A1, PD-L1, and cyclooxygenase-2 (COX-2) by immunohistochemistry. We show that cells engineered to overexpress the ALDH3A1 enzyme enriched the CSCs population in melanoma and NSCLC cultures, changing their transcriptome. In fact, we found increased expression of EMT markers, such as vimentin, fibronectin, and Zeb1, and of pro-inflammatory and immunosuppressive mediators, such as NFkB, prostaglandin E2, and interleukin-6 and -13. ALDH3A1 overexpression enhanced PD-L1 output in tumor cells and resulted in reduced proliferation of peripheral blood mononuclear cells when co-cultured with tumor cells. Furthermore, in tumor specimens from melanoma and NSCLC patients, ALDH3A1 expression was invariably correlated with PD-L1 and the pro-inflammatory marker COX-2. These findings link ALDH3A1 expression to tumor stemness, EMT and PD-L1 expression, and suggest that aldehyde detoxification is a redox metabolic pathway that tunes the immunological output of tumors.

15.
Cells ; 8(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766389

RESUMEN

Hyaluronic acid (HA) is used in substitutive and aesthetic medicine with various applications. Ultrapure absorbable HA (Bioregen®) and a mix of reticulated and free low molecular weight HA (Regenyal Idea Bioexpander®) (both provided by Regenyal Laboratories Srl, San Benedetto del Tronto (AP), Italy) represent a reliable hydrating device and skin filler, useful for skin blemishes, lines and wrinkles, and lip widening, respectively. The commercial products are known for their safety, but data on the molecular, cellular, and tissue responses are lacking. We aimed to evaluate the bioavailability and the pro-angiogenic features of the products Bioregen® and Bioexpander® in vitro on cultured endothelial cells (ECs) and dermal fibroblasts in vivo when injected into experimental animals. When added to fibroblasts and ECs, Bioexpander® induced cell migration. The two HA preparations were well tolerated, while a transient proangiogenic behavior of Bioexpander®, when implanted subcutaneously in mice, was found. The neovascular response was evident in the first week with higher levels of VEGF and FGF-2 before undergoing regression. In conclusion, our data strengthen the safety of HA synthetic preparations both in vitro and in vivo. Even if a proangiogenic response is documented, it is modest and transient, leading to tissue recovery and absence of an inflammatory infiltrate.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Ácido Hialurónico/farmacología , Inductores de la Angiogénesis , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Conejos
16.
Molecules ; 24(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694161

RESUMEN

Cardiovascular functionality strictly depends on endothelial cell trophism and proper biochemical function. Any condition (environmental, pharmacological/toxicological, physical, or neuro-humoral) that changes the vascular endothelium has great consequences for the organism's wellness and on the outcome and evolution of severe cardiovascular pathologies. Thus, knowledge of the mechanisms, both endogenous and external, that affect endothelial dysfunction is pivotal to preventing and treating these disorders. In recent decades, significant attention has been focused on gut microbiota and how these symbiotic microorganisms can influence host health and disease development. Indeed, dysbiosis has been reported to be at the base of a range of different pathologies, including pathologies of the cardiovascular system. The study of the mechanism underlying this relationship has led to the identification of a series of metabolites (released by gut bacteria) that exert different effects on all the components of the vascular system, and in particular on endothelial cells. The imbalance of factors promoting or blunting endothelial cell viability and function and angiogenesis seems to be a potential target for the development of new therapeutic interventions. This review highlights the circulating factors identified to date, either directly produced by gut microbes or resulting from the metabolism of diet derivatives as polyphenols.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Microbioma Gastrointestinal/fisiología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Supervivencia Celular/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Humanos
17.
ACS Omega ; 4(9): 13962-13971, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31497714

RESUMEN

Silica nanostructures are widely investigated for theranostic applications since relatively mild and easy synthetic methods allow the fabrication of multicompartment nanoparticles (NPs) and fine modulation of their properties. Here, we report the optimization of a synthetic strategy leading to brightly fluorescent silica NPs with a high loading ability, up to 45 molecules per NP, of Sorafenib, a small molecule acting as an antiangiogenic drug. We demonstrate that these NPs can efficiently release the drug and they are able to inhibit endothelial cell proliferation and migration and network formation. Their lyophilization can endow them with long shelf stability, whereas, once in solution, they show a much slower release compared to analogous micellar systems. Interestingly, Sorafenib released from Pluronic silica NPs completely prevented endothelial cell responses and postreceptor mitogen-activated protein kinase signaling ignited by vascular endothelial growth factor, one of the major players of tumor angiogenesis. Our results indicate that these theranostic systems represent a promising structure for anticancer applications since NPs alone have no cytotoxic effect on cultured endothelial cells, a cell type to which drugs and exogenous material are always in contact once delivered.

18.
Prostaglandins Other Lipid Mediat ; 143: 106344, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207300

RESUMEN

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) as gefitinib are standard treatment of non-small cell lung cancer (NSCLC), but resistance often occurs. This study demonstrates that NSCLC cells resistant to gefitinib (GR cells) displayed a significantly higher microsomal prostaglandin E synthase-1 (mPGES-1) expression and activity than parental cells. Overexpression of mPGES-1/prostaglandin E-2 (PGE-2) signaling in GR cells was associated with acquisition of mesenchymal and stem-like cell properties, nuclear EGFR translocation and tolerance to cisplatin. mPGES-1 inhibition reduced mesenchymal and stem-like properties, and nuclear EGFR translocation in GR cells. Consistently, inhibition of mPGES-1 activity enhanced sensitivity to cisplatin and responsiveness to gefitinib in GR cells. We propose the mPGES-1/PGE-2 signaling as a potential target for treating aggressive and resistant lung cancers.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos , Gefitinib/farmacología , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Prostaglandina-E Sintasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Dinoprostona/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/metabolismo , Silenciador del Gen , Humanos , Prostaglandina-E Sintasas/deficiencia , Prostaglandina-E Sintasas/genética , Transducción de Señal/efectos de los fármacos
19.
Sci Rep ; 9(1): 9297, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243320

RESUMEN

Neuropathic pain is characterized by an uncertain etiology and by a poor response to common therapies. The ineffectiveness and the frequent side effects of the drugs used to counteract neuropathic pain call for the discovery of new therapeutic strategies. Laser therapy proved to be effective for reducing pain sensitivity thus improving the quality of life. However, its application parameters and efficacy in chronic pain must be further analyzed. We investigated the pain relieving and protective effect of Photobiomodulation Therapy in a rat model of compressive mononeuropathy induced by Chronic Constriction Injury of the sciatic nerve (CCI). Laser (MLS-MiS) applications started 7 days after surgery and were performed ten times over a three week period showing a reduction in mechanical hypersensitivity and spontaneous pain that started from the first laser treatment until the end of the experiment. The ex vivo analysis highlighted the protective role of laser through the myelin sheath recovery in the sciatic nerve, inhibition of iNOS expression and enhancement of EAAT-2 levels in the spinal cord. In conclusion, this study supports laser treatment as a future therapeutic strategy in patients suffering from neuropathic pain induced by trauma.


Asunto(s)
Rayos Láser , Terapia por Luz de Baja Intensidad/métodos , Vaina de Mielina/efectos de la radiación , Neuralgia/radioterapia , Animales , Conducta Animal , Transportador 2 de Aminoácidos Excitadores/metabolismo , Hiperalgesia/complicaciones , Inflamación , Masculino , Proteína Básica de Mielina/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Umbral del Dolor , Presión , Calidad de Vida , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Médula Espinal/efectos de la radiación
20.
Methods Mol Biol ; 2007: 151-166, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148112

RESUMEN

Recently, hydrogen sulfide (H2S) has been characterized as an endogenous mediator able to control a series of cellular and tissue functions relevant for tissue homeostasis and repair such as angiogenesis. This chapter describes the tools and their use in a set of angiogenesis assays performed by using cultured endothelial cells in order to study the relevance of exogenous or endogenous H2S production and release during the occurrence of angiogenesis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA