Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Hyperthermia ; 40(1): 2211278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437891

RESUMEN

OBJECTIVE: Chronic bone infection caused by Staphylococcus aureus biofilms in children and adults is characterized by reduced antibiotic sensitivity. In this study, we assessed 'heat-targeted, on-demand' antibiotic delivery for S. aureus killing by combining ciprofloxacin (CIP)-laden low-temperature sensitive liposomes (LTSLs) with local high-intensity focused ultrasound (HIFU) induced bone heating in a rat model of bone infection. METHODS: CIP-LTSLs were prepared using the thin-film hydration and extrusion method. Bone infection was established by surgically implanting an orthopedic K-wire colonized with methicillin-resistant S. aureus (MRSA) strain into rat's femurs. For bone heating, ultrasound-guided HIFU exposures were performed to achieve a local temperature of 40-42 °C (∼15 min) concurrently with intravenous injection of CIP-LTSLs or CIP. CIP biodistribution was determined spectrophotometrically and therapeutic efficacy was determined by bacteriological, histological and scanning electron microscopy (SEM) analyses. RESULTS: CIP-LTSLs in the range of 183.5 nm ± 1.91 showed an encapsulation efficiency of >70% at 37 °C and a complete release at ∼42 °C. The metal implantation method yielded medullary osteomyelitis characterized by suppurative changes (bacterial and pus pockets) by day 10 in bones and adjoining muscle tissues. HIFU heating significantly improved CIP delivery from LTSLs in bones, resulting in a significant reduction in MRSA load compared to HIFU and CIP alone groups. These were also verified by histology and SEM, wherein a distinct reduction in S. aureus population in the infected metal wires and tissues from the combinatorial therapy was noted. CONCLUSION: HIFU improved CIP delivery to bones, achieving clearance of hard-to-treat MRSA biofilms.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Animales , Ratas , Staphylococcus aureus , Liposomas , Distribución Tisular , Ciprofloxacina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
2.
Ann Biomed Eng ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162696

RESUMEN

High intensity focused ultrasound (HIFU) is a promising non-invasive technique for treating solid tumors using thermal and histotripsy-based mechanical ablation. However, its clinical significance in different tumor types is not fully understood. To assess its therapeutic efficacy and immunomodulatory properties, we compared HIFU thermal ablation and histotripsy ablation in dogs with spontaneous tumors. We also evaluated the ability of non-ablative HIFU-based mild hyperthermia (40-45 ºC) to improve Doxorubicin delivery and immunomodulation. Our results showed that HIFU thermal ablation induced tumor remission in the majority of treated patients over 60 days, while histotripsy achieved partial response to stable disease persistence. The adverse effects of thermal ablation were minor to moderate, while histotripsy exposures were relatively well-tolerated. Furthermore, we observed a correlation between HIFU-therapeutic response and serum anti-tumor cytokine profiles and the presence of functionally active cytotoxic immune cells in patients. Similarly, Doxorubicin-treated patients showed improved drug delivery, efficacy, and anti-tumor immune responses with HIFU hyperthermia. In conclusion, our study demonstrates that depending on the tumor type and treatment parameters, HIFU treatments can enable tumor growth control, immune activation, and chemotherapy in veterinary patient. These findings have significant clinical implications and highlight the potential of HIFU as a promising cancer treatment approach.

3.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362011

RESUMEN

Manganese neurotoxicity has been reported to cause a neurodegenerative disease known as parkinsonism. Previous reports have shown that the expression of the KH-type splicing regulatory protein (KHSRP), a nucleic acid-binding protein, and NLRP3 is increased upon Mn exposure. However, the relation between these two during Mn toxicity has not been fully deduced. The mouse neuroblastoma (N2a) and SD rats are treated with LPS and MnCl2 to evaluate the expression of KHSRP and NLRP3. Further, the effect of the NLRP3 inhibitor MCC950 is checked on the expression of NLRP3, KHSRP and pro-inflammatory markers (TNFα, IL-18 and IL-1ß) as well as the caspase-1 enzyme. Our results demonstrated an increment in NLRP3 and KHSRP expression post-MnCl2 exposure in N2a cells and rat brain, while on the other hand with LPS exposure only NLRP3 expression levels were elevated and KHSRP was found to be unaffected. An increased expression of KHSRP, NLRP3, pro-inflammatory markers and the caspase-1 enzyme was observed to be inhibited with MCC950 treatment in MnCl2-exposed cells and rats. Manganese exposure induces NLRP3 and KHSRP expression to induce neuroinflammation, suggesting a correlation between both which functions in toxicity-related pathways. Furthermore, MCC950 treatment reversed the role of KHSRP from anti-inflammatory to pro-inflammatory.


Asunto(s)
Manganeso , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Ratones , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Lipopolisacáridos/toxicidad , Manganeso/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/etiología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley
4.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364070

RESUMEN

Rice is the most important staple food crop feeding more than 50% of the world's population. Rice blast is the most devastating fungal disease, caused by Magnaporthe oryzae (M. oryzae) which is widespread in rice growing fields causing a significant reduction in the yield. The present study was initiated to evaluate the effect of green synthesized silver nanoparticles (AgNPs) on the biochemical constituents of rice plants infected with blast. AgNPs were synthesized by using Azadirachta indica leaf extract and their characterization was performed using UV-visible spectroscopy, particle size analyser (PSA), scanning electron microscope (SEM), and X-ray diffraction (XRD) which confirmed the presence of crystalline, spherical shaped silver nanoparticles with an average size of 58.9 nm. After 45 days of sowing, artificial inoculation of rice blast disease was performed. After the onset of disease symptoms, the plants were treated with AgNPs with different concentrations. Application of nanoparticles elevated the activity of antioxidative enzymes such as superoxide dismutase, catalase, peroxidase, glutathione reductase, and phenylalanine ammonia-lyase compared to control plants, and total phenol and reducing sugars were also elevated. The outcome of this study showed that an increase in all biochemical constituents was recorded for A. indica silver nanoparticles-treated plants. The highest values were recorded in 30 ppm and 50 ppm AgNPs-treated plants, which showed the highest resistance towards the pathogen. Green synthesized AgNPs can be used in future for disease control in susceptible varieties of rice. The synthesized AgNPs using A. indica leaf extract have shown promising antibacterial activity when tested against 14 multidrug-resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) with a good zone of inhibition diameter, tested with the disc diffusion method. Based on these findings, it appears that A. indica AgNPs have promise as an antibacterial agent effective against MDR pathogens.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Agua/farmacología
5.
Antibiotics (Basel) ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358157

RESUMEN

An estimated 35% of the world's population depends on wheat as their primary crop. One fifth of the world's wheat is utilized as animal feed, while more than two thirds are used for human consumption. Each year, 17-18% of the world's wheat is consumed by China and India. In wheat, spot blotch caused by Bipolaris sorokiniana is one of the major diseases which affects the wheat crop growth and yield in warmer and humid regions of the world. The present work was conducted to evaluate the effect of green synthesized silver nanoparticles on the biochemical constituents of wheat crops infected with spot blotch disease. Silver nanoparticles (AgNPs) were synthesized using Mangifera indica leaf extract and their characterization was performed using UV-visible spectroscopy, SEM, XRD, and PSA. Characterization techniques confirm the presence of crystalline, spherical silver nanoparticles with an average size of 52 nm. The effect of green synthesized nanoparticles on antioxidative enzymes, e.g., Superoxide dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR), Peroxidase (POX), and phytochemical precursor enzyme Phenylalanine Ammonia-Lyase (PAL), and on primary and secondary metabolites, e.g., reducing sugar and total phenol, in Bipolaris sorokiniana infected wheat crop were studied. Inoculation of fungal spores was conducted after 40 days of sowing. Subsequently, diseased plants were treated with silver nanoparticles at different concentrations. Elevation in all biochemical constituents was recorded under silver nanoparticle application. The treatment with a concentration of nanoparticles at 50 pp min diseased plants showed the highest resistance towards the pathogen. The efficacy of the green synthesized AgNPs as antibacterial agents was evaluated against multi drug resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) and Gram-positive bacteria Methicillin resistant Staphylococcus aureus (n = 2). The results show promising antibacterial activity with significant inhibition zones observed with the disc diffusion method, thus indicating green synthesized M. indica AgNPs as an active antibacterial agent against MDR pathogens.

6.
Mol Microbiol ; 118(6): 731-743, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308071

RESUMEN

Acute respiratory infection by influenza virus is a persistent and pervasive public health problem. Antiviral innate immunity initiated by type I interferon (IFN) is the first responder to pathogen invasion and provides the first line of defense. We discovered that Axin1, a scaffold protein, was reduced during influenza virus infection. We also found that overexpression of Axin1 and the chemical stabilizer of Axin1, XAV939, reduced influenza virus replication in lung epithelial cells. This effect was also observed with respiratory syncytial virus and vesicular stomatitis virus. Axin1 boosted type I IFN response to influenza virus infection and activated JNK/c-Jun and Smad3 signaling. XAV939 protected mice from influenza virus infection. Thus, our studies provide new mechanistic insights into the regulation of the type I IFN response and present a new potential therapeutic of targeting Axin1 against influenza virus infection.


Asunto(s)
Proteína Axina , Gripe Humana , Interferones , Animales , Humanos , Ratones , Proteína Axina/metabolismo , Células Epiteliales , Inmunidad Innata , Gripe Humana/inmunología , Gripe Humana/metabolismo , Interferones/metabolismo , Replicación Viral
7.
Molecules ; 27(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566068

RESUMEN

The applications of bioactive compounds from medicinal plants as therapeutic drugs are largely increasing. The present study selected the bioactive compounds from Acacia concinna (A. concinna) and Citrus limon (C. limon) to assess their phytochemicals, proteins, and biological activity. The plant material was collected, and extraction performed as per the standard procedure. Qualitative analysis was undertaken, and identification of functional organic groups was performed by FTIR and HPLC. Antibacterial, anticancer, antioxidant, antihyperglycemic, antihyperlipidemic, and inhibition kinetics studies for enzymes were performed to assess the different biological activities. Flavonoids and phenols were present in a significant amount in both the selected plants. A. concinna showed significant antimicrobial activity against Z. mobilis, E. coli, and S. aureus, with minimum inhibition zones (MIZ) of 24, 22, and 20 mm, respectively. C. limon strongly inhibited all the tested pathogenic bacteria with maximum and minimum MIZ of 32 and 17 mm. A. concinna silver nanoparticles also exhibited potent antimicrobial activity. Both extracts showed substantial antioxidant, antihyperlipidemic, antidiabetic, anticancer (MCF-7), and anti-urease (antiulcer) properties. To conclude, these plants can be used to treat hyperlipidemia, diabetes, cancer, and gastrointestinal ulcers. They can also serve as antimicrobial and antioxidant agents. Thus, the studied plants must be exploited cost-effectively to generate therapeutic drugs for various diseases.


Asunto(s)
Acacia , Antiinfecciosos , Citrus , Nanopartículas del Metal , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Citrus/química , Escherichia coli , Hipolipemiantes , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/farmacología , Staphylococcus aureus
8.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209180

RESUMEN

Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials' tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.


Asunto(s)
Oro , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Nanomedicina Teranóstica/métodos , Fenómenos Químicos , Técnicas de Química Sintética , Desarrollo de Medicamentos , Oro/química , Tecnología Química Verde/métodos , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanotecnología , Extractos Vegetales/química , Plantas Medicinales/química , Análisis Espectral
9.
Chem Biol Drug Des ; 98(5): 857-868, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34423559

RESUMEN

Cyclin-dependent kinase 2 (CDK2) is an established target protein for therapeutic intervention in various diseases, including cancer. Reported inhibitors of CDK2 target the ATP-binding pocket to inhibit the kinase activity. Many small molecule CDK2 inhibitors have been discovered, and their crystal structure with CDK2 or CDK2-cyclin A complex has been published. NU6140 is a CDK2 inhibitor with moderate potency and selectivity. Herein, we report the cocrystal structure determination of NU6140 in complex with CDK2 and confirmation of the binding using various biophysical methods. Our data show that NU6140 binds to CDK2 with a Kd of 800 nM as determined by SPR and stabilizes the protein against thermal denaturation (ΔTm -5°C). The cocrystal structure determined in our study shows that NU6140 binds in the ATP-binding pocket as expected for this class of compounds and interacts with Leu83 and Glu81 with regular hydrogen bonds and with Asp145 via water-mediated H-bond. Based on these data, we propose structural modifications of NU6140 to introduce new interactions with CDK2 that can improve its potency while retaining the selectivity.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Purinas/química , Células A549 , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Termodinámica
10.
Int J Hyperthermia ; 38(1): 552-560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784931

RESUMEN

Purpose: Oral cancers are one of the commonly diagnosed tumors worldwide in human and veterinary patients. Most oral cancers are surgically resected; however, obtaining an adequate margin of safety in patients without compromising their quality of life is often challenging. Herein, we investigated the ability of non-invasive focused ultrasound (FUS) to thermally ablate a biopsy confirmed canine oral cancer. Materials and Methods: A male canine patient with a large neurilemmoma (schwannoma) mass on the left maxilla, with evidence of thinning and loss of alveolar bone and pressure necrosis, was treated with FUS ablation instead of the traditional maxillectomy procedure. FUS ablations were performed in three sessions over three weeks. Tumor remission was determined with computed tomography and histopathological examination of the treated site. Additionally, the anti-tumor immune effects of FUS were assessed by flow cytometry analysis of blood and tumor samples. Results: Complete tumor remission was noted at the treated site. Treatment related adverse events were primarily thermal burns of the buccal mucosa, which were managed with periodic hyperbaric oxygen therapy and surgical coverage of the underlying exposed bones with gingival flaps. Enhanced proliferation of adaptive immunity cells (e.g., T-cells) was observed in tumor and blood samples. Conclusion: Our limited investigation in a canine oral cancer patient suggests that FUS may avoid the need for large-scale resection of bony tissues, thus potentially improving quality of life.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias de la Boca , Animales , Perros , Humanos , Masculino , Neoplasias de la Boca/cirugía , Calidad de Vida
12.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 8): 350-356, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744246

RESUMEN

CVT-313 is a potent CDK2 inhibitor that was identified by screening a purine-analogue library and is currently in preclinical studies. Since this molecule has the potential to be developed as a CDK2 inhibitor for cancer therapy, the potency of CVT-313 to bind and stabilize CDK2 was evaluated, together with its ability to inhibit aberrant cell proliferation. CVT-313 increased the melting temperature of CDK2 by 7°C in thermal stabilization studies, thus indicating its protein-stabilizing effect. CVT-313 inhibited the growth of human lung carcinoma cell line A549 in a dose-dependent manner, with an IC50 of 1.2 µM, which is in line with the reported biochemical potency of 0.5 µM. To support the further chemical modification of CVT-313 and to improve its biochemical and cellular potency, a crystal structure was elucidated in order to understand the molecular interaction of CVT-313 and CDK2. The crystal structure of CDK2 bound to CVT-313 was determined to a resolution of 1.74 Šand clearly demonstrated that CVT-313 binds in the ATP-binding pocket, interacting with Leu83, Asp86 and Asp145 directly, and the binding was further stabilized by a water-mediated interaction with Asn132. Based on the crystal structure, further modifications of CVT-313 are proposed to provide additional interactions with CDK2 in the active site, which may significantly increase the biochemical and cellular potency of CVT-313.


Asunto(s)
Adenosina Trifosfato/química , Antineoplásicos/farmacología , Quinasa 2 Dependiente de la Ciclina/química , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Células A549 , Adenosina Trifosfato/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Cristalografía por Rayos X , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/farmacología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Indolizinas/química , Indolizinas/metabolismo , Indolizinas/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Purinas/química , Purinas/metabolismo , Compuestos de Piridinio/química , Compuestos de Piridinio/metabolismo , Compuestos de Piridinio/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Roscovitina/química , Roscovitina/metabolismo , Roscovitina/farmacología
13.
J Am Anim Hosp Assoc ; 56(4): 231-235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32412336

RESUMEN

A 6 yr old neutered male German shepherd dog was evaluated at a veterinary referral hospital following diagnosis of uroabdomen of unknown origin. A positive-contrast retrograde urethrogram identified diffusely irregular margins of the urinary bladder but no active leakage of urine into the peritoneal cavity. An abdominal ultrasound identified severe thickening and loss of wall layering of the apex of the bladder. The dog was initially managed with an indwelling urinary catheter; however, when the catheter was removed 5 days later, the dog developed a recurrent uroabdomen after an episode of dysuria. Subsequent surgical exploration identified numerous (>5), small (1-2 cm), black cyst-like nodules within the bladder wall at the apex of the bladder. A partial cystectomy, removing approximately 65% of the cranial bladder, was performed. Histopathology and immunohistochemistry of the bladder identified hemangiosarcoma of the bladder wall with chronic neutrophilic and hemorrhagic cystitis. The dog recovered from surgery without major complication and is still alive 9 mo following surgery. To the authors' knowledge, this is the first report of successful treatment of canine bladder hemangiosarcoma by partial cystectomy in a dog.


Asunto(s)
Cistectomía/veterinaria , Enfermedades de los Perros/cirugía , Hemangiosarcoma/veterinaria , Neoplasias de la Vejiga Urinaria/veterinaria , Animales , Cistectomía/métodos , Perros , Hemangiosarcoma/cirugía , Masculino , Neoplasias de la Vejiga Urinaria/cirugía
14.
J Dig Dis ; 21(12): 711-723, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33405317

RESUMEN

OBJECTIVE: To evaluate the efficacy of vasoactive intestinal peptide (VIP) in treating ulcerative colitis (UC), targeting colonic mitochondrial dysfunction by virtue of its free radical scavenging properties for maintenance of colon mucosal integrity. METHODS: A murine model was administered with dextran sodium sulfate (DSS) to induce colitis in C57BL/6J mice at 3.5%/g bodyweight for 3 cycles of 5 days each, followed by an intraperitoneal dose of VIP at 0.5 nmol/L per mouse per day for 10 days. The post-treatment mice were sacrificed and their colon samples were utilized for further analysis. To substantiate the in vivo findings and identify the reactive species involved in progression of UC, Caco-2 cells were subjected to DSS (5%) for 24 hours at 37 °C with or without VIP (10 nmol/L) in the presence or absence of specific free radical scavengers and antioxidants. RESULTS: Treatment with VIP reduced histopathological severity of colitis and cell death markers in murine model, leading to partial recovery of inhibited mitochondrial respiratory complexes, altered mitochondrial membrane potential and lowered adenosine triphosphate generation. Interestingly, in vitro treatment with VIP restored mitochondrial functions and its efficacy was equal to super oxide dismutase and dimethyl sulfoxide, indicating involvement of superoxide free radical (O2 •-) and hydroxyl radical (•OH) in progression of UC. However, catalase, Nω-nitro-l-arginine methyl ester and mercaptoethylguanidine were ineffective, indicating non-involvement of hydrogen peroxide, nitric oxide and ONOO- in UC. CONCLUSION: By virtue of its free radical scavenging properties VIP can act as a potent anti-colitogenic agent, reversing colonic mitochondrial dysfunction for treating UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Células CACO-2 , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Péptido Intestinal Vasoactivo/metabolismo
15.
Am J Pathol ; 189(9): 1711-1720, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220453

RESUMEN

Streptococcus pneumoniae is commonly found in patients with chronic obstructive pulmonary disease (COPD) and is linked to acute exacerbation of COPD. However, current clinical therapy neglects asymptomatic insidious S. pneumoniae colonization. We studied the roles of repeated exposure to S. pneumoniae in COPD progression using a mouse model. C57BL/6J mice were intranasally inoculated with S. pneumoniae ST262 every 4 weeks with or without cigarette smoke (CS) exposure up to 20 weeks to maintain persistent S. pneumoniae presence in the lower airways. Streptococcus pneumoniae enhanced CS-induced inflammatory cell infiltration at 12 to 20 weeks of exposure. Streptococcus pneumoniae also increased CS-induced release of inflammatory cytokines, including IL-1ß, tumor necrosis factor-α, IL-12 (p70), and IL-5 at 20 weeks of exposure. Moreover, a combination of CS and S. pneumoniae caused alveolar epithelial injury, a decline in lung function, and an increased expression of platelet-activating factor receptor and bacterial load. Our results suggest that repeated exposure to S. pneumoniae in lower airways exacerbates CS-induced COPD.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación/etiología , Infecciones Neumocócicas/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/etiología , Fumar/efectos adversos , Streptococcus pneumoniae/patogenicidad , Animales , Progresión de la Enfermedad , Femenino , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Infecciones Neumocócicas/microbiología , Enfermedad Pulmonar Obstructiva Crónica/patología
16.
Vet Pathol ; 56(4): 586-598, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30558508

RESUMEN

Rhinitis and sinusitis caused by fungal pathogens were studied in biopsy samples submitted from 52 horses distributed throughout subtropical and tropical regions of Florida. Methods included routine histopathology as well as polymerase chain reaction (PCR) with panfungal/panoomycete primers and DNA sequencing on extracted DNA (DNA barcoding). Granulomatous, pyogranulomatous, and fibrinopurulent lesions in nasal and sinus mucosa were associated with signs of upper airway obstruction and noise as well as nasal discharge. Morphologic and histochemical assessment of cases identified 31 cases of zygomycosis/pythiosis plus 1 mixed infection case, 16 cases of phaeohyphomycosis with 2 additional mixed infection cases, and 3 cases caused by other fungi. Morphologic evidence of Aspergillus sp. infection as a superficial copathogen was found in 2 of the mixed fungal infection cases. PCR and DNA sequencing facilitated identification of fungal pathogens in 11 of 52 cases (21%). No evidence of oomycete infection was found. Histomorphologic features of previously unrecognized forms of equine rhinitis/sinusitis were described, including those caused by Flavodon flavus, Curvularia lunata, Exserohilum rostrata, Alternaria alternata, Alternaria sp., Cladophialophora bantiana, Fusarium solani, and Toxicocladosporium irritans. PCR and DNA sequencing using panfungal and oomycete primers with DNA from formalin-fixed and paraffin-embedded specimens successfully identified the pathogen in phaeohyphomycosis (7/18 cases, 39%), zygomycosis/pythiosis (1/32 cases, 3%), and other nonpigmented fungal infections (3/3 cases, 100%). Zygomycosis and phaeohyphomycosis were the most common forms of fungal rhinitis found in Florida horses.


Asunto(s)
Ascomicetos/aislamiento & purificación , Aspergillus/aislamiento & purificación , Basidiomycota/aislamiento & purificación , Enfermedades de los Caballos/diagnóstico , Micosis/veterinaria , Rinitis/veterinaria , Sinusitis/veterinaria , Animales , Ascomicetos/genética , Aspergillus/genética , Basidiomycota/genética , Cartilla de ADN/genética , Enfermedades de los Caballos/microbiología , Enfermedades de los Caballos/patología , Caballos , Micosis/diagnóstico , Micosis/microbiología , Micosis/patología , Feohifomicosis/diagnóstico , Feohifomicosis/microbiología , Feohifomicosis/patología , Feohifomicosis/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Rinitis/diagnóstico , Rinitis/microbiología , Rinitis/patología , Análisis de Secuencia de ADN/veterinaria , Sinusitis/diagnóstico , Sinusitis/microbiología , Sinusitis/patología
17.
Mediators Inflamm ; 2018: 6808934, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532653

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines. It requires interaction with an adaptor molecule, mitochondrial antiviral-signaling protein (MAVS), to activate downstream signaling pathways. To elucidate the mechanism(s) by which RIG-I-dependent recognition of IAV infection in vivo triggers innate immune responses, we infected mutant mice lacking RIG-I or MAVS with influenza A virus (IAV) and measured their innate immune responses. As has previously been demonstrated with isolated deletion of the virus recognition receptors TLR3, TLR7, and NOD2, RIG-I or MAVS knockout (KO) did not result in higher mortality and did not reduce IAV-induced cytokine responses in mice. Infected RIG-I KO animals displayed similar lung inflammation profiles as did WT mice, in terms of the protein concentration, total cell count, and inflammatory cell composition in the bronchoalveolar lavage fluid. RNA-Seq results demonstrated that all types of mice exhibited equivalent antiviral and inflammatory gene responses following IAV infection. Together, the results indicated that although RIG-I is important in innate cytokine responses in vitro, individual deletion of the genes encoding RIG-I or MAVS did not change survival or innate responses in vivo after IAV infection in mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 58 DEAD Box/metabolismo , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Lavado Broncoalveolar , Proteína 58 DEAD Box/genética , Humanos , Inmunoensayo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Transducción de Señal/fisiología , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
18.
Respir Res ; 18(1): 166, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28865477

RESUMEN

BACKGROUND: Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines which participate in clearing viral infections. Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. METHODS: We generated a RIG-I transgenic (TG) mouse strain that expresses the RIG-I gene product under the control of the human lung specific surfactant protein C promoter. We compared the mortality and host immune responses of RIG-I TG mice and their litter-matched wild type (WT) mice following challenge with influenza A virus (IAV). RESULTS: RIG-I overexpression increased survival of IAV-infected mice. CS exposure increased mortality in WT mice infected with IAV. Remarkably, the effect of RIG-I overexpression on survival during IAV infection was enhanced in CS-exposed animals. CS-exposed IAV-infected WT mice had a suppressed innate response profile in the lung compared to sham-exposed IAV-infected WT mice in terms of the protein concentration, total cell count and inflammatory cell composition in the bronchoalveolar lavage fluid. RIG-I overexpression restored the innate immune response in CS-exposed mice to that seen in sham-exposed WT mice during IAV infection, and is likely responsible for enhanced survival in RIG-I TG mice as restoration preceded death of the animals. CONCLUSIONS: Our results demonstrate that RIG-I overexpression in mice is protective for CS enhanced susceptibility of smokers to influenza infection, and that CS mediated RIG-I suppression may be partially responsible for the increased morbidity and mortality of the mice exposed to IAV. Thus, optimizing the RIG-I response may be an important treatment strategy for CS-enhanced lung infections, particularly those due to IAV.


Asunto(s)
Proteína 58 DEAD Box/biosíntesis , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/mortalidad , Fumar/metabolismo , Fumar/mortalidad , Animales , Proteína 58 DEAD Box/genética , Perros , Expresión Génica , Humanos , Exposición por Inhalación/efectos adversos , Células de Riñón Canino Madin Darby , Ratones , Ratones Transgénicos , Mortalidad/tendencias , Fumar/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos
19.
Protein Pept Lett ; 23(9): 848-59, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27397476

RESUMEN

Scorpions are distributed throughout the world and numerous biological molecules are found in their venom most importantly peptide toxins. These toxins modulate the ion channels either by blocking the pore of the channel or by altering the voltage gating. Molecules which block the pores have been useful in deciphering the structure of the ion channels. Many scorpion toxins have already been used for probing the voltage gated sodium channels and studying their activation and inactivation processes. The specialty of scorpion toxins is to discriminate between vertebrate and invertebrate channels which have led them to applications as pharmacological tools. Most of the scorpion toxin polypeptides were isolated, characterized and were shown to possess vital properties useful in the field of medicine. For instance, they show therapeutic properties such as antimicrobial activity, anticancer activity, used to treat autoimmune diseases and cardiovascular effects. Although the scorpion toxins exhibited good therapeutic effects in vitro and in vivo, no one has reached the market with success up to date. In this mini-review, the scorpion polypeptides, their interactions with ion channels and their uses as therapeutic agents are discussed.


Asunto(s)
Canales Iónicos/efectos de los fármacos , Péptidos/farmacología , Venenos de Escorpión/química , Escorpiones/metabolismo , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Péptidos/química , Escorpiones/química
20.
Am J Respir Cell Mol Biol ; 52(2): 253-61, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25054912

RESUMEN

Glycoprotein nonmetastatic melanoma protein B (GPNMB), a transmembrane protein, has been reported to have an important role in tissue repair and angiogenesis. Recently, we have demonstrated that hyperoxia exposure down-regulates microRNA (miR)-150 expression and concurrent induction of its target gene, GPNMB, in neonatal rat lungs. This study aimed to test the hypothesis that soluble GPNMB (sGPNMB) promotes angiogenesis in the hyperoxic neonatal lungs. Wild-type (WT) or miR-150 knockout (KO) neonates, exposed to 95% O2 for 3, 6, and 10 days, were evaluated for lung phenotypes, GPNMB protein expression in the lungs, and sGPNMB levels in the bronchoalveolar lavage. Angiogenic effects of sGPNMB were examined both in vitro and in vivo. After a 6-day exposure, similar analyses were performed in WT and miR-150 KO neonates during recovery at 7, 14, and 21 days. miR-150 KO neonates displayed an increased capillary network, decreased inflammation, and less alveolar damage compared with WT neonates after hyperoxia exposure. The early induction of GPNMB and sGPNMB were found in miR-150 KO neonates. The recombinant GPNMB, which contained a soluble portion of GPNMB, promoted endothelial tube formation in vitro and enhanced angiogenesis in vivo. The increased capillaries in the hyperoxic lungs of miR-150 KO neonates appeared dysmorphic. They were abnormally enlarged in size and occasionally laid at subepithelial regions in the alveoli. However, the lung architecture returned to normal during recovery, suggesting that abnormal vascularity during hyperoxia does not affect postnatal lung development. GPNMB plays an important role in angiogenesis during hyperoxia injury. Treatment with GPNMB may offer a novel therapeutic approach in reducing pathologic complications in bronchopulmonary dysplasia.


Asunto(s)
Proteínas del Ojo/metabolismo , Hiperoxia/metabolismo , Lesión Pulmonar/metabolismo , Glicoproteínas de Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Animales Recién Nacidos , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA