Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Allergy Clin Immunol ; 147(6): 2343-2357, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33493558

RESUMEN

BACKGROUND: There is limited knowledge on the origin and development from CD34+ precursors of the ample spectrum of human natural killer (NK) cells, particularly of specialized NK subsets. OBJECTIVE: This study sought to characterize the NK-cell progeny of CD34+DNAM-1brightCXCR4+ and of other precursors circulating in the peripheral blood of patients with chronic viral infections (eg, HIV, hepatitis C virus, cytomegalovirus reactivation). METHODS: Highly purified precursors were obtained by flow cytometric sorting and cultured in standard NK-cell differentiation media (ie, SCF, FLT3, IL-7, IL-15). Phenotypic and functional analyses on progenies were performed by multiparametric cytofluorimetric assays. Transcriptional signatures of NK-cell progenies were studied by microarray analysis. Inhibition of cytomegalovirus replication was studied by PCR. RESULTS: Unlike conventional CD34+ precursors, Lin-CD34+DNAM-1brightCXCR4+ precursors from patients with chronic infection, rapidly differentiate into cytotoxic, IFN-γ-secreting CD94/NKG2C+KIR+CD57+ NK-cell progenies. An additional novel subset of common lymphocyte precursors was identified among Lin-CD34-CD56-CD16+ cells and characterized by expression of CXCR4 and lack of perforin and CD94. Lin-CD34-CD56-CD16+Perf-CD94-CXCR4+ precursors are also endowed with generation potential toward memory-like NKG2C+NK cells. Maturing NK-cell progenies mediated strong human cytomegalovirus-inhibiting activity. Microarray analysis confirmed a transcriptional signature compatible with NK-cell progenies and with maturing adaptive NK cells. CONCLUSIONS: During viral infections, precursors of adaptive NK cells are released and circulate in the peripheral blood.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Biomarcadores , Diferenciación Celular , Citocinas/metabolismo , Infecciones por Citomegalovirus/virología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/inmunología
2.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764469

RESUMEN

NK cells can exert remarkable graft-versus-leukemia (GvL) effect in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Here, we dissected the NK-cell repertoire of 80 pediatric acute leukemia patients previously reported to have an excellent clinical outcome after αßT/B-depleted haplo-HSCT. This graft manipulation strategy allows the co-infusion of mature immune cells, mainly NK and γδT cells, and hematopoietic stem cells (HSCs). To promote NK-cell based antileukemia activity, 36/80 patients were transplanted with an NK alloreactive donor, defined according to the KIR/KIR-Ligand mismatch in the graft-versus-host direction. The analysis of the reconstituted NK-cell repertoire in these patients showed relatively high proportions of mature and functional KIR+NKG2A-CD57+ NK cells, including the alloreactive NK cell subset, one month after HSCT. Thus, the NK cells adoptively transfused with the graft persist as a mature source of effector cells while new NK cells differentiate from the donor HSCs. Notably, the alloreactive NK cell subset was endowed with the highest anti-leukemia activity and its size in the reconstituted repertoire could be influenced by human cytomegalovirus (HCMV) reactivation. While the phenotypic pattern of donor NK cells did not impact on post-transplant HCMV reactivation, in the recipients, HCMV infection/reactivation fostered a more differentiated NK-cell phenotype. In this cohort, no significant correlation between differentiated NK cells and relapse-free survival was observed.

3.
Cancer Immunol Res ; 7(5): 841-852, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940644

RESUMEN

Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. However, immune responses that correlate with clinical progression of the disease are still poorly understood. To identify immune responses correlating with melanoma clinical evolution, we analyzed serum cytokines as well as circulating NK and T-cell subpopulations from melanoma patients. The patients' immune profiles suggested that melanoma progression leads to changes in peripheral blood NK and T-cell subsets. Stage IV melanoma was characterized by an increased frequency of CCR7+CD56bright NK cells as well as high serum concentrations of the CCR7 ligand CCL19. CCR7 expression and CCL19 secretion were also observed in melanoma cell lines. The CCR7+ melanoma cell subpopulation coexpressed PD-L1 and Galectin-9 and had stemness properties. Analysis of melanoma-derived cancer stem cells (CSC) showed high CCR7 expression; these CSCs were efficiently recognized and killed by NK cells. An accumulation of CCR7+, PD-L1+, and Galectin-9+ melanoma cells in melanoma metastases was demonstrated ex vivo Altogether, our data identify biomarkers that may mark a CCR7-driven metastatic melanoma pathway.


Asunto(s)
Células Asesinas Naturales/inmunología , Melanoma/inmunología , Antígeno B7-H1/inmunología , Línea Celular , Quimiocina CCL19/inmunología , Técnicas de Cocultivo , Citocinas/sangre , Femenino , Galectinas/inmunología , Humanos , Masculino , Melanoma/sangre , Melanoma/patología , Células Madre Neoplásicas/inmunología , Receptores CCR7/inmunología
4.
Oncoimmunology ; 8(3): 1557030, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723590

RESUMEN

Under physiological conditions, PD-1/PD-L1 interactions regulate unwanted over-reactions of immune cells and contribute to maintain peripheral tolerance. However, in tumor microenvironment, this interaction may greatly compromise the immune-mediated anti-tumor activity. PD-1+ NK cells have been detected in high percentage in peripheral blood and ascitic fluid of ovarian carcinoma patients. To acquire information on PD-1 expression and physiology in human NK cells, we analyzed whether PD-1 mRNA and protein are present in resting, surface PD-1-, NK cells from healthy donors. Both different splicing isoforms of PD-1 mRNA and a cytoplasmic pool of PD-1 protein were detected. Similar results were obtained also from both in vitro-activated and tumor-associated NK cells. PD-1 mRNA and protein were higher in CD56dim than in CD56bright NK cells. Confocal microscopy analyses revealed that PD-1 protein is present in virtually all NK cells analyzed. The present findings are compatible with a rapid surface expression of PD-1 in NK cells in response to appropriate, still undefined, stimuli.

5.
Front Immunol ; 9: 2360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374356

RESUMEN

Natural killer cells are cytotoxic innate lymphoid cells that play an important role for early host defenses against infectious pathogens and surveillance against tumor. In humans, NK cells may be divided in various subsets on the basis of the relative CD56 expression and of the low-affinity FcγRIIIA CD16. In particular, the two main NK cell subsets are represented by the CD56bright/CD16-/dim and the CD56dim/CD16bright NK cells. Experimental evidences indicate that CD56bright and CD56dim NK cells represent different maturative stages of the NK cell developmental pathway. We identified multiple miRNAs differentially expressed in CD56bright/CD16- and CD56dim/CD16bright NK cells using both univariate and multivariate analyses. Among these, we found a few miRNAs with a consistent differential expression in the two NK cell subsets, and with an intermediate expression in the CD56bright/CD16dim NK cell subset, representing a transitional step of maturation of NK cells. These analyses allowed us to establish the existence of a miRNA signature able to efficiently discriminate the two main NK cell subsets regardless of their surface phenotype. In addition, by analyzing the putative targets of representative miRNAs we show that hsa-miR-146a-5p, may be involved in the regulation of killer Ig-like receptor (KIR) expression. These results contribute to a better understanding of the physiologic significance of miRNAs in the regulation of the development/function of human NK cells. Moreover, our results suggest that hsa-miR-146a-5p targeting, resulting in KIR down-regulation, may be exploited to generate/increment the effect of NK KIR-mismatching against HLA-class I+ tumor cells and thus improve the NK-mediated anti-tumor activity.


Asunto(s)
Diferenciación Celular/genética , Células Asesinas Naturales/metabolismo , Subgrupos Linfocitarios/metabolismo , MicroARNs/genética , Transcriptoma , Biomarcadores , Diferenciación Celular/inmunología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/inmunología , Receptores KIR/genética , Receptores KIR/metabolismo , Reproducibilidad de los Resultados
6.
Oncoimmunology ; 7(9): e1468953, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357053

RESUMEN

Several studies support the notion that the kinase inhibitor Imatinib mesylate exerts off-target effects on cells of the immune system. After our first report of continuous daily oral administration in subjects with relapsed/refractory neuroblastoma (NB, EudraCT: 2005-005778-63), here we update the clinical information and report additional information on potential surrogate markers for prediction of efficacy. Peripheral blood (PB) samples collected at study entry and after the first and second cycle of Imatinib mesylate treatment were tested for IFN-γ, TNF-α, TGF-ß, IL-10, CXCL12 and soluble (s) B7-H6 plasma levels. In addition, paired PB and bone marrow (BM) samples collected at study entry and after the second Imatinib cycle were evaluated for CXCL12, CXCR4 and NKp30 isoform mRNA levels. Correlation between each parameter level and response/outcome was then evaluated. Out of the six subjects still alive at the time of the first report, thee died after additional therapy, two for NB progression and one for a second malignancy. Three are presently alive and cured from NB at 10 years after the first Imatinib cycle. Of these, one achieved complete response (CR) during Imatinib treatment and never relapsed, one had a local relapse removed by surgery and the third received TVD as rescue therapy. Response and outcome were associated with low Imatinib exposure, whereas none of the tested immunological and molecular parameters was predictive of response/outcome. However, after Imatinib treatment NKp30 isoform mRNA levels significantly increase in BM samples, indicating that Imatinib mesylate exerted an off-target effect on NK cells in vivo. Imatinib mesylate efficacy in relapsed/refractory NB has been confirmed at a longer follow-up, supporting its inclusion in new Phase II trials for these subjects, that should envisage collection of samples to evaluate the predictive power of other potential surrogate markers of efficacy.

7.
Front Immunol ; 9: 984, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867961

RESUMEN

γδ T lymphocytes are potent effector cells, capable of efficiently killing tumor and leukemia cells. Their activation is mediated by γδ T-cell receptor (TCR) and by activating receptors shared with NK cells (e.g., NKG2D and DNAM-1). γδ T-cell triggering occurs upon interaction with specific ligands, including phosphoantigens (for Vγ9Vδ2 TCR), MICA-B and UL16 binding protein (for NKG2D), and PVR and Nectin-2 (for DNAM-1). They also respond to cytokines undergoing proliferation and release of cytokines/chemokines. Although at the genomic level γδ T-cells have the potential of an extraordinary TCR diversification, in tissues they display a restricted repertoire. Recent studies have identified various γδ TCR rearrangements following either hematopoietic stem cell transplantation (HSCT) or cytomegalovirus infection, accounting for their "adaptive" potential. In humans, peripheral blood γδ T-cells are primarily composed of Vγ9Vδ2 chains, while a minor proportion express Vδ1. They do not recognize antigens in the context of MHC molecules, thus bypassing tumor escape based on MHC class I downregulation. In view of their potent antileukemia activity and absence of any relevant graft-versus-host disease-inducing effect, γδ T-cells may play an important role in the successful clinical outcome of patients undergoing HLA-haploidentical HSCT depleted of TCR αß T/CD19+ B lymphocytes to cure high-risk acute leukemias. In this setting, high numbers of both γδ T-cells (Vδ1 and Vδ2) and NK cells are infused together with CD34+ HSC and may contribute to rapid control of infections and leukemia relapse. Notably, zoledronic acid potentiates the cytolytic activity of γδ T-cells in vitro and its infusion in patients strongly promotes γδ T-cell differentiation and cytolytic activity; thus, treatment with this agent may contribute to further improve the patient clinical outcome after HLA-haploidentical HSCT depleted of TCR αß T/CD19+ B lymphocytes.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfocitos Intraepiteliales/inmunología , Leucemia/terapia , Animales , Linfocitos B/inmunología , Infecciones por Citomegalovirus , Genes MHC Clase I , Humanos , Linfocitos Intraepiteliales/metabolismo , Células Asesinas Naturales/inmunología , Leucemia/inmunología , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/genética
8.
Front Immunol ; 9: 1050, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868012

RESUMEN

In human natural killer (NK) cells, human cytomegalovirus (HCMV) has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT) recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6), downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12). This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56-CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully "adaptive" profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV-induced FcεRγneg and FcεRγ+ NK cells from these patients, display similar CD107a degranulation and IFN-γ production capabilities in response to different stimuli, thus indicating that the acquisition of specialized effector functions can be achieved before the "adaptation" to HCMV is completed. Our study provides new insights in the process leading to the generation of different adaptive NK-cell subsets and may contribute to develop new approaches for their employment as novel immunotherapeutic tools.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/efectos adversos , Infecciones por Citomegalovirus/inmunología , Células Asesinas Naturales/inmunología , Receptores de IgE/inmunología , Activación Viral , Adulto , Citotoxicidad Celular Dependiente de Anticuerpos , Diferenciación Celular/inmunología , Niño , Preescolar , Citomegalovirus , Regulación hacia Abajo , Femenino , Citometría de Flujo , Humanos , Lactante , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Receptores de IgE/genética , Receptores de Trasplantes , Adulto Joven
9.
Trends Immunol ; 39(7): 577-590, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29793748

RESUMEN

Natural killer (NK) cells are involved in innate defenses against viruses and tumors. Their function is finely tuned by activating and inhibitory receptors. Among the latter, killer immunoglobulin-like receptors and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to discriminate between normal and aberrant cells, as well as to recognize allogeneic cells, because of their ability to sense HLA polymorphisms. This latter phenomenon plays a key role in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) for high-risk acute leukemia patients transplanted from an NK-alloreactive donor. Different haplo-HSCT settings have been developed, either T depleted or T replete - the latter requiring graft-versus-host disease prophylaxis. A novel graft manipulation, based on depletion of αß T cells and B cells, allows infusion of fully mature, including alloreactive, NK cells. The excellent patient clinical outcome underscores the importance of these innate cells in cancer therapy.


Asunto(s)
Efecto Injerto vs Leucemia/inmunología , Células Asesinas Naturales/inmunología , Leucemia/inmunología , Antígenos HLA/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos
10.
Front Immunol ; 8: 868, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791023

RESUMEN

Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-ß1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-ß1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-ß1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-ß1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-ß1-induced regulator of CX3CR1 expression.

11.
J Immunol ; 199(4): 1516-1525, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28701512

RESUMEN

Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses.


Asunto(s)
Antineoplásicos/farmacología , Mesilato de Imatinib/farmacología , Células Asesinas Naturales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Pirimidinas/farmacología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Diferenciación Celular/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/fisiología , Monocitos/inmunología , Monocitos/fisiología , Neuroblastoma/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptores CCR1/genética , Receptores CCR1/inmunología , Receptores CCR1/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
12.
Blood ; 130(5): 677-685, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28588018

RESUMEN

Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-haploidentical relative (haplo-HSCT) is a suitable option for children with acute leukemia (AL) either relapsed or at high-risk of treatment failure. We developed a novel method of graft manipulation based on negative depletion of αß T and B cells and conducted a prospective trial evaluating the outcome of children with AL transplanted with this approach. Eighty AL children, transplanted between September 2011 and September 2014, were enrolled in the trial. All children were given a fully myeloablative preparative regimen. Anti-T-lymphocyte globulin from day -5 to -3 was used for preventing graft rejection and graft-versus-host disease (GVHD); no patient received any posttransplantation GVHD prophylaxis. Two children experienced primary graft failure. The cumulative incidence of skin-only, grade 1-2 acute GVHD was 30%; no patient developed extensive chronic GVHD. Four patients died, the cumulative incidence of nonrelapse mortality being 5%, whereas 19 relapsed, resulting in a 24% cumulative incidence of relapse. With a median follow-up of 46 months for surviving patients, the 5-year probability of chronic GVHD-free, relapse-free survival (GRFS) is 71%. Total body irradiation-containing preparative regimen was the only variable favorably influencing relapse incidence and GRFS. The outcomes of these 80 patients are comparable to those of 41 and 51 children given transplantation from an HLA-identical sibling or a 10/10 allelic-matched unrelated donor in the same period. These data indicate that haplo-HSCT after αß T- and B-cell depletion represents a competitive alternative for children with AL in need of urgent allograft. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Asunto(s)
Linfocitos B , Trasplante de Células Madre Hematopoyéticas , Leucemia , Depleción Linfocítica , Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T , Enfermedad Aguda , Adolescente , Adulto , Aloinjertos , Suero Antilinfocítico/administración & dosificación , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Enfermedad Injerto contra Huésped/mortalidad , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Lactante , Leucemia/mortalidad , Leucemia/terapia , Masculino , Tasa de Supervivencia
13.
Oncotarget ; 8(21): 35088-35102, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28456791

RESUMEN

Angiogenesis represents a hallmark of tumor progression in Multiple Myeloma (MM), a still incurable malignancy. Here we analyzed the activity of cytokine-stimulated NK cells against tumor-associated endothelial cells isolated from bone marrow aspirates of MM patients with active disease (MMECs). We show that NK cells activated with optimal doses of IL-15 killed MMECs thanks to the concerted action of multiple activating receptors. In particular, according to the high expression of PVR and Nectin-2 on MMECs, DNAM-1 actively participated in target recognition. Interestingly, in MMECs the surface density of PVR was significantly higher than that detected in endothelium from patients with MM in complete remission or with monoclonal gammopathy of undetermined significance (MGUS). Importantly, IL-27, which unlike IL-15 does not display pro-angiogenic properties, maintained or increased the NK cell functions induced by suboptimal concentrations of IL-15. NK cell properties included killing of MMECs, IFN-γ production as well as a peculiar increase of NKp46 expression on NK cell surface. Finally, IL-27 showed a striking capability of up-regulating the expression of PD-L2 and HLA-I on tumor endothelium, whereas it did not modify that of PD-L1 and HLA-II.Our results suggest that cytokine-activated endogenous or adoptively transferred NK cells might support conventional therapies improving the outcome of MM patients.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Interleucinas/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Mieloma Múltiple/inmunología , Anciano , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Humanos , Interleucina-15/farmacología , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Mieloma Múltiple/metabolismo , Neovascularización Patológica , Receptores Virales/metabolismo
14.
Eur J Immunol ; 47(6): 1051-1061, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386908

RESUMEN

X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48- KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48- targets, such as mature DCs. Self-iNKR- NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients' immune defect.


Asunto(s)
Células Asesinas Naturales/inmunología , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/fisiopatología , Receptores de Células Asesinas Naturales/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Antígeno CD48/inmunología , Antígeno CD48/metabolismo , Genes MHC Clase I , Humanos , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Canales de Potasio de Rectificación Interna/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología
15.
Cytometry B Clin Cytom ; 92(2): 100-114, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28054442

RESUMEN

Natural killer (NK) cells, the most important effectors of the innate lymphoid cells (ILCs), play a fundamental role in tumor immune-surveillance, defense against viruses and, in general, in innate immune responses. NK cell activation is mediated by several activating receptors and co-receptors able to recognize ligands on virus-infected or tumor cells. To prevent healthy cells from auto-aggression, NK cells are provided with strong inhibitory receptors (KIRs and NKG2A) which recognize HLA class I molecules on target cells and, sensing their level of expression, allow killing of targets underexpressing HLA-class I. In vivo, NK cell-mediated anti-tumor function may be suppressed by tumor or tumor-associated cells via inhibitory soluble factors/cytokines or the engagement of the so called immune-check point molecules (e.g., PD1-PDL1). The study of these immune check-points is now offering new important opportunities for the therapy of cancer. In haemopoietic stem cell transplantation, alloreactive NK cells (i.e., those that express KIRs, which do not recognize HLA class I molecules on patient cells), derived from HSC of haploidentical donors, are able to kill leukemia blasts and patient's DC, thus preventing both tumor relapses and graft-versus-host disease. A clear correlation exists between size of the alloreactive NK cell population and clinical outcome. Thus, in view of the recent major advances in cancer therapy based on immuno-mediated mechanisms, the phenotypic analysis of cells and molecules involved in these mechanisms plays an increasingly major role. © 2017 International Clinical Cytometry Society.


Asunto(s)
Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales/citología , Leucemia/terapia , Receptores KIR/metabolismo , Animales , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/inmunología , Humanos , Leucemia/inmunología , Fenotipo
16.
J Allergy Clin Immunol ; 139(1): 335-346.e3, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27372564

RESUMEN

BACKGROUND: Programmed death 1 (PD-1) is an immunologic checkpoint that limits immune responses by delivering potent inhibitory signals to T cells on interaction with specific ligands expressed on tumor/virus-infected cells, thus contributing to immune escape mechanisms. Therapeutic PD-1 blockade has been shown to mediate tumor eradication with impressive clinical results. Little is known about the expression/function of PD-1 on human natural killer (NK) cells. OBJECTIVE: We sought to clarify whether human NK cells can express PD-1 and analyze their phenotypic/functional features. METHODS: We performed multiparametric cytofluorimetric analysis of PD-1+ NK cells and their functional characterization using degranulation, cytokine production, and proliferation assays. RESULTS: We provide unequivocal evidence that PD-1 is highly expressed (PD-1bright) on an NK cell subset detectable in the peripheral blood of approximately one fourth of healthy subjects. These donors are always serologically positive for human cytomegalovirus. PD-1 is expressed by CD56dim but not CD56bright NK cells and is confined to fully mature NK cells characterized by the NKG2A-KIR+CD57+ phenotype. Proportions of PD-1bright NK cells were higher in the ascites of a cohort of patients with ovarian carcinoma, suggesting their possible induction/expansion in tumor environments. Functional analysis revealed a reduced proliferative capability in response to cytokines, low degranulation, and impaired cytokine production on interaction with tumor targets. CONCLUSIONS: We have identified and characterized a novel subpopulation of human NK cells expressing high levels of PD-1. These cells have the phenotypic characteristics of fully mature NK cells and are increased in patients with ovarian carcinoma. They display low proliferative responses and impaired antitumor activity that can be partially restored by antibody-mediated disruption of PD-1/programmed death ligand interaction.


Asunto(s)
Células Asesinas Naturales/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Degranulación de la Célula , Proliferación Celular , Citocinas/inmunología , Femenino , Humanos , Células Asesinas Naturales/fisiología , Neoplasias Ováricas/inmunología , Fenotipo
17.
J Mol Biol ; 428(22): 4457-4466, 2016 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-27663271

RESUMEN

Antibodies have been shown to block signaling through cell surface receptors using several mechanisms. The two most common are binding to the ligand-binding site of the receptor and, conversely, binding to the receptor-binding site of the ligand. Here, we investigated the inhibitory mechanism of an antibody (17B1.3) against human B7-H6, a stress-induced cellular ligand for the natural killer (NK) cell receptor NKp30. Binding of this antibody to B7-H6, a transmembrane protein expressed on tumor and other stressed cells, but not on normal cells, prevents NK cell activation via NKp30. We determined the crystal structure of antibody 17B1.3 in complex with the ectodomain of B7-H6 to 2.5Å resolution. Surprisingly, 17B1.3 binds to a site on B7-H6 that is completely distinct from the binding site for NKp30, such that 17B1.3 does not block the NKp30-B7-H6 interaction. We then asked whether 17B1.3 prevents signaling by binding to a putative site for B7-H6 dimerization. However, structure-based mutations designed to disrupt potential B7-H6 dimerization through this site did not diminish NKp30-mediated cell activation. We conclude that the bulky 17B1.3 antibody most likely acts by sterically interfering with close cell-cell contacts at the NK cell-target cell interface that are required for NK cell activation. A similar inhibitory mechanism may apply to other antibodies, including therapeutic antibodies that block signaling through cell surface receptors whose ligands are also cell surface proteins.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos B7/antagonistas & inhibidores , Antígenos B7/metabolismo , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Anticuerpos Monoclonales/química , Antígenos B7/química , Antígenos B7/genética , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Conformación Proteica
18.
Front Immunol ; 7: 351, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683578

RESUMEN

Human NK cells are distinguished into CD56(bright)CD16(-) cells and CD56(dim)CD16(+) cells. These two subsets are conventionally associated with differential functional outcomes and are heterogeneous with respect to the expression of KIR and CD94/NKG2 heterodimers that represent the two major types of HLA-class I-specific receptors. Recent studies indicated that immature CD56(bright) NK cells, homogeneously expressing the inhibitory CD94/NKG2A receptor, are precursors of CD56(dim) NK cells that, in turn, during their process of differentiation, lose expression of CD94/NKG2A and subsequentially acquire inhibitory KIRs and LIR-1. The terminally differentiated phenotype of CD56(dim) cells is marked by the expression of the CD57 molecule that is associated with poor responsiveness to cytokine stimulation, but retained cytolytic capacity. Remarkably, this NKG2A(-)KIR(+)LIR-1(+)CD57(+)CD56(dim) NK cell subset when derived from individuals previously exposed to pathogens, such as human cytomegalovirus (HCMV), may contain "memory-like" NK cells. These cells are generally characterized by an upregulation of the activating receptor CD94/NKG2C and a downregulation of the inhibitory receptor Siglec-7. The "memory-like" NK cells are persistent over time and display some hallmarks of adaptive immunity, i.e., clonal expansion, more effective antitumor and antiviral immune responses, longevity, as well as given epigenetic modifications. Interestingly, unknown cofactors associated with HCMV infection may induce the onset of a recently identified fully mature NK cell subset, characterized by marked downregulation of the activating receptors NKp30 and NKp46 and by the unexpected expression of the inhibitory PD-1 receptor. This phenotype correlates with an impaired antitumor NK cell activity that can be partially restored by antibody-mediated disruption of PD-1/PD-L interaction.

19.
J Clin Invest ; 126(10): 3772-3782, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27571408

RESUMEN

NK cells are innate lymphocytes with protective functions against viral infections and tumor formation. Human NK cells carry inhibitory killer cell Ig-like receptors (KIRs), which recognize distinct HLAs. NK cells with KIRs for self-HLA molecules acquire superior cytotoxicity against HLA- tumor cells during education for improved missing-self recognition. Here, we reconstituted mice with human hematopoietic cells from donors with homozygous KIR ligands or with a mix of hematopoietic cells from these homozygous donors, allowing assessment of the resulting KIR repertoire and NK cell education. We found that co-reconstitution with 2 KIR ligand-mismatched compartments did not alter the frequency of KIR-expressing NK cells. However, NK cell education was diminished in mice reconstituted with parallel HLA compartments due to a lack of cognate HLA molecules on leukocytes for the corresponding KIRs. This change in NK cell education in mixed human donor-reconstituted mice improved NK cell-mediated immune control of EBV infection, indicating that mixed hematopoietic cell populations could be exploited to improve NK cell reactivity against leukotropic pathogens. Taken together, these findings indicate that leukocytes lacking cognate HLA ligands can disarm KIR+ NK cells in a manner that may decrease HLA- tumor cell recognition but allows for improved NK cell-mediated immune control of a human γ-herpesvirus.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/fisiología , Células Asesinas Naturales/inmunología , Inmunidad Adaptativa , Animales , Infecciones por Virus de Epstein-Barr/inmunología , Células HEK293 , Herpesvirus Humano 4/inmunología , Humanos , Células K562 , Ratones Endogámicos NOD , Ratones SCID
20.
J Immunol Res ; 2016: 4684268, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27294158

RESUMEN

Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue.


Asunto(s)
Inmunoterapia , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Antígeno B7-H1/metabolismo , Citotoxicidad Inmunológica , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/inmunología , Antígenos HLA/metabolismo , Proteína HMGB1/fisiología , Humanos , Tolerancia Inmunológica , Células Asesinas Naturales/química , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Metástasis de la Neoplasia/prevención & control , Neoplasias/fisiopatología , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA