Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Pathol ; 229(3): 400-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23132766

RESUMEN

Our group recently described recurrent somatic mutations of the miRNA processing gene DICER1 in non-epithelial ovarian cancer. Mutations appeared to be clustered around each of four critical metal-binding residues in the RNase IIIB domain of DICER1. This domain is responsible for cleavage of the 3' end of the 5p miRNA strand of a pre-mRNA hairpin. To investigate the effects of these cancer-associated 'hotspot' mutations, we engineered mouse DICER1-deficient ES cells to express wild-type and an allelic series of the mutant DICER1 variants. Global miRNA and mRNA profiles from cells carrying the metal-binding site mutations were compared to each other and to wild-type DICER1. The miRNA and mRNA profiles generated through the expression of the hotspot mutations were virtually identical, and the DICER1 hotspot mutation-carrying cells were distinct from both wild-type and DICER1-deficient cells. Further, miRNA profiles showed that mutant DICER1 results in a dramatic loss in processing of mature 5p miRNA strands but were still able to create 3p strand miRNAs. Messenger RNA (mRNA) profile changes were consistent with the loss of 5p strand miRNAs and showed enriched expression for predicted targets of the lost 5p-derived miRNAs. We therefore conclude that cancer-associated somatic hotspot mutations of DICER1, affecting any one of four metal-binding residues in the RNase IIIB domain, are functionally equivalent with respect to miRNA processing and are hypomorphic alleles, yielding a global loss in processing of mature 5p strand miRNA. We further propose that this resulting 3p strand bias in mature miRNA expression likely underpins the oncogenic potential of these hotspot mutations.


Asunto(s)
ARN Helicasas DEAD-box/genética , MicroARNs/genética , Mutación , Neoplasias Ováricas/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Animales , ARN Helicasas DEAD-box/metabolismo , Análisis Mutacional de ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias Ováricas/patología , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Células Tumorales Cultivadas
2.
Pharmacogenomics J ; 13(2): 148-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22249354

RESUMEN

The drug fluorouracil (5-FU) is a widely used antimetabolite chemotherapy in the treatment of colorectal cancer. The gene uridine monophosphate synthetase (UMPS) is thought to be primarily responsible for conversion of 5-FU to active anticancer metabolites in tumor cells. Mutation or aberrant expression of UMPS may contribute to 5-FU resistance during treatment. We undertook a characterization of UMPS mRNA isoform expression and sequence variation in 5-FU-resistant cell lines and drug-naive or -exposed primary and metastatic tumors. We observed reciprocal differential expression of two UMPS isoforms in a colorectal cancer cell line with acquired 5-FU resistance relative to the 5-FU-sensitive cell line from which it was derived. A novel isoform arising as a consequence of exon skipping was increased in abundance in resistant cells. The underlying mechanism responsible for this shift in isoform expression was determined to be a heterozygous splice site mutation acquired in the resistant cell line. We developed sequencing and expression assays to specifically detect alternative UMPS isoforms and used these to determine that UMPS was recurrently disrupted by mutations and aberrant splicing in additional 5-FU-resistant colorectal cancer cell lines and colorectal tumors. The observed mutations, aberrant splicing and downregulation of UMPS represent novel mechanisms for acquired 5-FU resistance in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Fluorouracilo/administración & dosificación , Complejos Multienzimáticos/genética , Orotato Fosforribosiltransferasa/genética , Orotidina-5'-Fosfato Descarboxilasa/genética , Isoformas de ARN/genética , ARN Mensajero/genética , Empalme Alternativo/genética , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Fluorouracilo/efectos adversos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Complejos Multienzimáticos/metabolismo , Mutación , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/metabolismo
3.
Oncogene ; 31(10): 1334-40, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21804605

RESUMEN

ETV6-NTRK3 (EN), a chimeric tyrosine kinase generated by t(12;15) translocations, is a dominantly acting oncoprotein in diverse tumor types. We previously showed that insulin-like growth factor 1 receptor (IGF1R) is essential for EN-mediated oncogenesis and that insulin receptor substrate 1 (IRS1) is constitutively tyrosine phosphorylated and bound by EN in transformed cells. Given that IRS1 is also an adapter for IGF1R, we hypothesized that IRS1 might localize EN to IGF1R at the membrane to activate phosphatidylinositol 3-kinase (PI3K)-Akt, which is critical for EN oncogenesis. In this study, we examined EN/IRS1/IGF1R complexes in detail. We find that both IRS1 and kinase active IGF1R are required for EN transformation, that tyrosine phosphorylated IRS1 is present in high molecular weight complexes with EN and IGF1R, and that EN colocalizes with IGF1R at the plasma membrane. Both IGF1R kinase activity and an intact cytoplasmic Y950 residue, the IRS1-docking site of IGF1R, are required, confirming the importance of the IGF1R/IRS1 interaction for EN oncogenesis. The dual specificity IGF1R and insulin receptor (INSR) inhibitor, BMS-536924, blocks EN transformation activity, cell survival and its interaction with IRS proteins, and induces a striking shift of EN proteins to smaller sized molecular complexes. We conclude that a tripartite complex of EN, IRS1 and IGF1R localizes EN to the membrane and that this is essential for EN-mediated transformation. These findings provide an explanation for the observed IGF1R dependency of EN transformation. Blocking IGF1R kinase activity may, therefore, provide a tractable therapeutic strategy for the many tumor types driven by the EN oncoprotein.


Asunto(s)
Membrana Celular/metabolismo , Transformación Celular Neoplásica , Proteínas Sustrato del Receptor de Insulina/fisiología , Proteínas de Fusión Oncogénica/fisiología , Receptor IGF Tipo 1/fisiología , Animales , Interleucina-3/farmacología , Ratones , Fosforilación
4.
Genes Dev ; 13(7): 817-26, 1999 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10197982

RESUMEN

Most normal human diploid cells have no detectable telomerase; however, expression of the catalytic subunit of telomerase is sufficient to induce telomerase activity and, in many cases, will bypass normal senescence. We and others have previously demonstrated in vitro assembly of active telomerase by combining the purified RNA component with the reverse transcriptase catalytic component synthesized in rabbit reticulocyte extract. Here we show that assembly of active telomerase from in vitro-synthesized components requires the contribution of proteins present in reticulocyte extracts. We have identified the molecular chaperones p23 and Hsp90 as proteins that bind to the catalytic subunit of telomerase. Blockade of this interaction inhibits assembly of active telomerase in vitro. Also, a significant fraction of active telomerase from cell extracts is associated with p23 and Hsp90. Consistent with in vitro results, inhibition of Hsp90 function in cells blocks assembly of active telomerase. To our knowledge, p23 and Hsp90 are the first telomerase-associated proteins demonstrated to contribute to telomerase activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Telomerasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Benzoquinonas , Western Blotting , Ciclosporina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Lactamas Macrocíclicas , Chaperonas Moleculares/metabolismo , Quinonas/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Conejos , Reticulocitos/metabolismo , Factores de Tiempo
5.
Oncogene ; 18(5): 1219-26, 1999 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-10022128

RESUMEN

The telomerase reverse transcriptase component (TERT) is not expressed in most primary somatic human cells and tissues, but is upregulated in the majority of immortalized cell lines and tumors. Here, we identify the c-Myc transcription factor as a direct mediator of telomerase activation in primary human fibroblasts through its ability to specifically induce TERT gene expression. Through the use of a hormone inducible form of c-Myc (c-Myc-ER), we demonstrate that Myc-induced activation of the hTERT promoter requires an evolutionarily conserved E-box and that c-Myc-ER-induced accumulation of hTERT mRNA takes place in the absence of de novo protein synthesis. These findings demonstrate that the TERT gene is a direct transcriptional target of c-Myc. Since telomerase activation frequently correlates with immortalization and telomerase functions to stabilize telomers in cycling cells, we tested whether Myc-induced activation of TERT gene expression represents an important mechanism through which c-Myc acts to immortalize cells. Employing the rat embryo fibroblast cooperation assay, we show that TERT is unable to substitute for c-Myc in the transformation of primary rodent fibroblasts, suggesting that the transforming activities of Myc extend beyond its ability to activate TERT gene expression and hence telomerase activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transformación Celular Neoplásica , Isomerasa de Peptidilprolil , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , ADN Polimerasa Dirigida por ARN/biosíntesis , ARN , Telomerasa/biosíntesis , Animales , Secuencia de Bases , Secuencia Conservada , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas/genética , ADN Polimerasa Dirigida por ARN/genética , Ratas , Homología de Secuencia de Ácido Nucleico , Telomerasa/genética , Transcripción Genética
6.
Oncogene ; 16(13): 1723-30, 1998 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-9582020

RESUMEN

We have identified the mouse telomerase reverse transcriptase component (mTERT) and demonstrate both substantial sequence homology to the human ortholog (hTERT), and the presence of reverse transcriptase and telomerase specific motifs. Furthermore, we show functional interchangeability with hTERT in in vitro telomerase reconstitution experiments, as mTERT produces strong telomerase activity in combination with the human telomerase RNA component hTR. The mouse TERT is widely expressed at low levels in adult tissues, with greatest abundance during embryogenesis and in adult thymus and intestine. The mTERT component mRNA levels were regulated during both differentiation and proliferation, while mTR levels remained constant throughout both processes. Comparison of mTERT and mTR levels to telomerase activity indicates that mTERT expression is more tightly linked to the regulation of telomerase activity during these processes than is mTR. In contrast to the situation in human cell cultures, mTERT transcript levels are present at readily detectable levels in primary cultured cells and are not upregulated following crisis. The widespread expression of mTERT in primary cells and mouse tissues could explain the increased frequency of spontaneous immortalization of mouse cells in culture and tumorigenesis in vivo.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Nucleoproteínas/genética , Proteínas/genética , ARN no Traducido , Telomerasa/genética , Células 3T3 , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Senescencia Celular , Mapeo Cromosómico , ADN Complementario , Proteínas de Unión al ADN , Regulación hacia Abajo , Humanos , Leucemia Eritroblástica Aguda , Ratones , Ratones Endogámicos C57BL , Mitógenos/farmacología , Datos de Secuencia Molecular , Proteínas/metabolismo , ARN/genética , ARN/metabolismo , ARN Largo no Codificante , Homología de Secuencia de Aminoácido , Bazo , Telomerasa/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Distribución Tisular , Células Tumorales Cultivadas
7.
Science ; 279(5349): 349-52, 1998 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-9454332

RESUMEN

Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.


Asunto(s)
División Celular , Senescencia Celular , Proteínas/metabolismo , ARN , Telomerasa/metabolismo , Telómero/fisiología , Biomarcadores , Catálisis , Línea Celular , Transformación Celular Neoplásica , Clonación Molecular , Proteínas de Unión al ADN , Fibroblastos/citología , Homeostasis , Humanos , Cariotipificación , Fenotipo , Epitelio Pigmentado Ocular/citología , Proteínas/genética , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Células Madre/citología , Células Madre/enzimología , Telomerasa/genética , Telómero/metabolismo , Telómero/ultraestructura , Transfección , Células Tumorales Cultivadas , beta-Galactosidasa/metabolismo
8.
Nat Genet ; 17(4): 498-502, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9398860

RESUMEN

The maintenance of chromosome termini, or telomeres, requires the action of the enzyme telomerase, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. Telomerase is expressed and telomere length is maintained in human germ cells and the great majority of primary human tumours. However, telomerase is not detectable in most normal somatic cells; this corresponds to the gradual telomere loss observed with each cell division. It has been proposed that telomere erosion eventually signals entry into senescence or cell crisis and that activation of telomerase is usually required for immortal cell proliferation. In addition to the human telomerase RNA component (hTR; ref. 11), TR1/TLP1 (refs 12, 13), a protein that is homologous to the p80 protein associated with the Tetrahymena enzyme, has been identified in humans. More recently, the human telomerase reverse transcriptase (hTRT; refs 15, 16), which is homologous to the reverse transcriptase (RT)-like proteins associated with the Euplotes aediculatus (Ea_p123), Saccharomyces cerevisiae (Est2p) and Schizosaccharomyces pombe (5pTrt1) telomerases, has been reported to be a telomerase protein subunit. A catalytic function has been demonstrated for Est2p in the RT-like class but not for p80 or its homologues. We now report that in vitro transcription and translation of hTRT when co-synthesized or mixed with hTR reconstitutes telomerase activity that exhibits enzymatic properties like those of the native enzyme. Single amino-acid changes in conserved telomerase-specific and RT motifs reduce or abolish activity, providing direct evidence that hTRT is the catalytic protein component of telomerase. Normal human diploid cells transiently expressing hTRT possessed telomerase activity, demonstrating that hTRT is the limiting component necessary for restoration of telomerase activity in these cells. The ability to reconstitute telomerase permits further analysis of its biochemical and biological roles in cell aging and carcinogenesis.


Asunto(s)
ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , ARN/metabolismo , Telomerasa/genética , Secuencia de Aminoácidos , Animales , Catálisis , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , ARN/biosíntesis , ARN/genética , ADN Polimerasa Dirigida por ARN/biosíntesis , Conejos , Alineación de Secuencia , Moldes Genéticos
9.
Exp Gerontol ; 32(4-5): 375-82, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9315442

RESUMEN

The replicative capacity of cells may limit the lifespan of key systems in the body. It has long been known that normal human cells have a finite lifespan when placed in cell culture, and their lifespan is dependent on the age of the individual donor. The mechanism of the genetic program that times this process has been elusive. The telomere hypothesis of cell aging proposes that the length of the telomeric repeat array at chromosomal termini can time replication number and signal cell cycle arrest when critical telomere lengths are obtained. The erosion of telomeric DNA in normal tissues appears to be due to the lack of expression of components of the telomere maintenance system. Telomerase, the key enzyme involved in telomere replication, is not expressed in somatic tissues, but is expressed in germ cells, where telomere length is stably maintained, so that viable chromosomes can be transmitted to the next generation. Evidence is reviewed that correlates telomere length, telomerase activity, and the manipulation of telomere length with cell replicative capacity and cellular immortalization. Strong circumstantial evidence exists that indicates a role for telomere biology in the control of replicative capacity and in tumorigenesis.


Asunto(s)
Longevidad/fisiología , Telómero/fisiología , Animales , Línea Celular Transformada/fisiología , Senescencia Celular/fisiología , Humanos , Transducción de Señal , Telomerasa/metabolismo , Telómero/ultraestructura
10.
Eur J Cancer ; 33(5): 750-60, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9282113

RESUMEN

The replication of linear chromosome termini (telomeres) cannot be completely replicated by conventional DNA polymerases. Telomerase is a special DNA polymerase used by most eukaryotes to solve the telomere and replication problem. Telomerase is necessary for indefinite cell division in most immortal cells, but apparently unnecessary for the normal function of most somatic tissues. Telomerase may play a critical role in some genetic diseases, in regulating the lifespan of normal cells, and in tumorigenesis. This article reviews the structure and reaction mechanism of mammalian telomerase and how it may be exploited to control some human diseases.


Asunto(s)
Replicación del ADN , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Telomerasa/metabolismo , Telómero/genética , Senescencia Celular/genética , Activación Enzimática , Humanos , Neoplasias/enzimología
11.
J Natl Cancer Inst ; 88(16): 1095-6, 1996 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-8757183
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA