Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep ; 43(9): 114664, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39178113

RESUMEN

Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.


Asunto(s)
Antígenos CD40 , Ratones Endogámicos C57BL , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Antígenos CD40/metabolismo , Animales , Factor 6 Asociado a Receptor de TNF/metabolismo , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Humanos , Masculino , Trasplante de Corazón , Inmunidad Entrenada
2.
STAR Protoc ; 5(2): 103087, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38795353

RESUMEN

Here, we present a protocol for the development of mRNA-loaded lipid nanoparticle (LNP) vaccines for target antigen sequences of interest. We describe key steps required to design and synthesize mRNA constructs, their LNP encapsulation, and mouse immunization. We then detail quality control assays to determine RNA purity, guidelines to measure RNA immunogenicity using in vitro reporter systems, and a technique to evaluate antigen-specific T cell responses following immunization.


Asunto(s)
Inmunización , Lípidos , Nanopartículas , ARN Mensajero , Animales , Ratones , Nanopartículas/química , ARN Mensajero/genética , Lípidos/química , Inmunización/métodos , Vacunas/inmunología , Vacunas/química , Vacunas/administración & dosificación , Vacunas de ARNm/inmunología , Nanovacunas , Liposomas
3.
Npj Imaging ; 2(1): 12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765879

RESUMEN

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative. Here, we developed a positron emission tomography (PET) radiotracer based on apolipoprotein A1 (ApoA1), the main protein component of high-density lipoprotein (HDL), which has an inherent affinity for macrophages. We radiolabeled an ApoA1-mimetic peptide (mA1) with zirconium-89 (89Zr) to generate a lipoprotein-avid PET probe (89Zr-mA1). We first characterized 89Zr-mA1's affinity for lipoproteins in vitro by size exclusion chromatography. To study 89Zr-mA1's in vivo behavior and interaction with endogenous lipoproteins, we performed extensive studies in wildtype C57BL/6 and Apoe-/- hypercholesterolemic mice. Subsequently, we used in vivo PET imaging to study macrophages in melanoma and myocardial infarction using mouse models. The tracer's cell specificity was assessed by histology and mass cytometry (CyTOF). Our data show that 89Zr-mA1 associates with lipoproteins in vitro. This is in line with our in vivo experiments, in which we observed longer 89Zr-mA1 circulation times in hypercholesterolemic mice compared to C57BL/6 controls. 89Zr-mA1 displayed a tissue distribution profile similar to ApoA1 and HDL, with high kidney and liver uptake as well as substantial signal in the bone marrow and spleen. The tracer also accumulated in tumors of melanoma-bearing mice and in the ischemic myocardium of infarcted animals. In these sites, CyTOF analyses revealed that natZr-mA1 was predominantly taken up by macrophages. Our results demonstrate that 89Zr-mA1 associates with lipoproteins and hence accumulates in macrophages in vivo. 89Zr-mA1's high uptake in these cells makes it a promising radiotracer for non-invasively and quantitatively studying conditions characterized by marked changes in macrophage burden.

4.
Pharmaceutics ; 15(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986763

RESUMEN

Photodynamic therapy is a non-invasive therapeutic strategy that combines external light with a photosensitizer (PS) to destroy abnormal cells. Despite the great progress in the development of new photosensitizers with improved efficacy, the PS's photosensitivity, high hydrophobicity, and tumor target avidity still represent the main challenges. Herein, newly synthesized brominated squaraine, exhibiting intense absorption in the red/near-infrared region, has been successfully incorporated into Quatsome (QS) nanovesicles at different loadings. The formulations under study have been characterized and interrogated in vitro for cytotoxicity, cellular uptake, and PDT efficiency in a breast cancer cell line. The nanoencapsulation of brominated squaraine into QS overcomes the non-water solubility limitation of the brominated squaraine without compromising its ability to generate ROS rapidly. In addition, PDT effectiveness is maximized due to the highly localized PS loadings in the QS. This strategy allows using a therapeutic squaraine concentration that is 100 times lower than the concentration of free squaraine usually employed in PDT. Taken together, our results reveal the benefits of the incorporation of brominated squaraine into QS to optimize their photoactive properties and support their applicability as photosensitizer agents for PDT.

5.
Angew Chem Int Ed Engl ; 56(9): 2381-2385, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28079954

RESUMEN

Point mutations in Ras oncogenes are routinely screened for diagnostics and treatment of tumors (especially in colorectal cancer). Here, we develop an optical approach based on direct SERS coupled with chemometrics for the study of the specific conformations that single-point mutations impose on a relatively large fragment of the K-Ras gene (141 nucleobases). Results obtained offer the unambiguous classification of different mutations providing a potentially useful insight for diagnostics and treatment of cancer in a sensitive, fast, direct and inexpensive manner.


Asunto(s)
ADN/genética , Genes ras , Mutación Puntual , Espectrometría Raman/métodos , Análisis Mutacional de ADN/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA