Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187598

RESUMEN

Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.

2.
Elife ; 92020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31913124

RESUMEN

The Hippo pathway regulates organ size, regeneration, and cell growth by controlling the stability of the transcription factor, YAP (Yorkie in Drosophila). When there is tissue damage, YAP is activated allowing the restoration of homeostatic tissue size. The exact signals by which YAP is activated are still not fully understood, but its activation is known to affect both cell size and cell number. Here we used cultured cells to examine the coordinated regulation of cell size and number under the control of YAP. Our experiments in isogenic HEK293 cells reveal that YAP can affect cell size and number by independent circuits. Some of these effects are cell autonomous, such as proliferation, while others are mediated by secreted signals. In particular CYR61, a known secreted YAP target, is a non-cell autonomous mediator of cell survival, while another unidentified secreted factor controls cell size.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Tamaño de la Célula , Factores de Transcripción/metabolismo , Apoptosis , Recuento de Células , División Celular , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA