Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Infect Dis ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487996

RESUMEN

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

2.
Sci Adv ; 9(41): eadh3150, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824621

RESUMEN

Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.


Asunto(s)
COVID-19 , Inmunoglobulina G , Humanos , Vacunas contra la COVID-19 , Estudios Prospectivos , COVID-19/prevención & control , Inmunidad
3.
Nat Commun ; 13(1): 4610, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941149

RESUMEN

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2
4.
Res Sq ; 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35194602

RESUMEN

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use. However, SARS-CoV-2 continues to circulate and consequently, variants of concern (VoCs) have been detected, with substitutions in the S protein that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial over boosting with vaccines encoding the ancestral S protein, even though current real-world data is suggesting good efficacy against hospitalization and death following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluated the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. We then investigated the efficacy of a single dose of AZD2816 or AZD1222 against the Omicron VoC. As seen previously, minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 5 days post inoculation, in contrast to lungs of control animals. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

5.
Viruses ; 13(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960775

RESUMEN

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


Asunto(s)
COVID-19 , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Metabolismo de los Lípidos , Índice de Severidad de la Enfermedad , Animales , COVID-19/patología , Cricetinae , Citocinas/sangre , Modelos Animales de Enfermedad , Edema , Fibrina , Hemorragia , Humanos , Interleucina-10 , Interleucina-6 , Lipidómica , Lípidos/sangre , Hígado/patología , Pulmón/patología , Masculino , Mesocricetus , Obesidad , SARS-CoV-2 , Azúcares , Vasculitis/patología , Esparcimiento de Virus
6.
Sci Transl Med ; 13(607)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34315826

RESUMEN

ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Cricetinae , Macaca mulatta , Vacunación , Esparcimiento de Virus
7.
NPJ Vaccines ; 6(1): 32, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654106

RESUMEN

Lassa virus (LASV) infects hundreds of thousands of individuals each year, highlighting the need for the accelerated development of preventive, diagnostic, and therapeutic interventions. To date, no vaccine has been licensed for LASV. ChAdOx1-Lassa-GPC is a chimpanzee adenovirus-vectored vaccine encoding the Josiah strain LASV glycoprotein precursor (GPC) gene. In the following study, we show that ChAdOx1-Lassa-GPC is immunogenic, inducing robust T-cell and antibody responses in mice. Furthermore, a single dose of ChAdOx1-Lassa-GPC fully protects Hartley guinea pigs against morbidity and mortality following lethal challenge with a guinea pig-adapted LASV (strain Josiah). By contrast, control vaccinated animals reached euthanasia criteria 10-12 days after infection. Limited amounts of LASV RNA were detected in the tissues of vaccinated animals. Viable LASV was detected in only one animal receiving a single dose of the vaccine. A prime-boost regimen of ChAdOx1-Lassa-GPC in guinea pigs significantly increased antigen-specific antibody titers and cleared viable LASV from the tissues. These data support further development of ChAdOx1-Lassa-GPC and testing in non-human primate models of infection.

8.
Sci Transl Med ; 13(578)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33431511

RESUMEN

Detailed knowledge about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is important for uncovering the viral and host factors that contribute to coronavirus disease 2019 (COVID-19) pathogenesis. Old-World nonhuman primates recapitulate mild to moderate cases of COVID-19, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with infectious SARS-CoV-2 or irradiated, inactivated virus to study the dynamics of virus replication throughout the respiratory tract. Genomic RNA from the animals inoculated with the irradiated virus was found to be highly stable, whereas subgenomic RNA, an indicator of viral replication, was found to degrade quickly. We combined this information with single-cell RNA sequencing of cells isolated from the lung and lung-draining mediastinal lymph nodes and developed new analysis methods for unbiased targeting of important cells in the host response to SARS-CoV-2 infection. Through detection of reads to the viral genome, we were able to determine that replication of the virus in the lungs appeared to occur mainly in pneumocytes, whereas macrophages drove the inflammatory response. Monocyte-derived macrophages recruited to the lungs, rather than tissue-resident alveolar macrophages, were most likely to be responsible for phagocytosis of infected cells and cellular debris early in infection, with their roles switching during clearance of infection. Together, our dataset provides a detailed view of the dynamics of virus replication and host responses over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Pulmón/virología , SARS-CoV-2/fisiología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Líquido del Lavado Bronquioalveolar/virología , COVID-19/genética , Chlorocebus aethiops , ADN Viral/genética , Femenino , Genoma Viral/genética , Inflamación/patología , Pulmón/patología , Ganglios Linfáticos/patología , Macrófagos/patología , Macrófagos/virología , Masculino , Mediastino/patología , Transcripción Genética , Carga Viral , Replicación Viral
9.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465158

RESUMEN

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , COVID-19/patología , Queratina-18/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , COVID-19/inmunología , COVID-19/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Queratina-18/inmunología , Pulmón/inmunología , Pulmón/patología , Linfocitos/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , SARS-CoV-2/fisiología , Tráquea/inmunología , Tráquea/virología
10.
Cell ; 183(7): 1901-1912.e9, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33248470

RESUMEN

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding was observed from the upper respiratory tract of a female immunocompromised individual with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and of genomic and subgenomic RNA up to 105 days, after initial diagnosis. The infection was not cleared after the first treatment with convalescent plasma, suggesting a limited effect on SARS-CoV-2 in the upper respiratory tract of this individual. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2 with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised individuals may shed infectious virus longer than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2-positive individuals as a proxy for shedding of infectious virus.


Asunto(s)
COVID-19/inmunología , Inmunodeficiencia Variable Común/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , SARS-CoV-2/aislamiento & purificación , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/complicaciones , COVID-19/virología , Inmunodeficiencia Variable Común/sangre , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/virología , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/complicaciones , Leucemia Linfocítica Crónica de Células B/virología , Infecciones del Sistema Respiratorio/sangre , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
11.
Nature ; 586(7830): 578-582, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32731258

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Macaca mulatta , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Adenoviridae/genética , Animales , Líquido del Lavado Bronquioalveolar , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Citocinas/inmunología , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Ratones , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Vacunación , Carga Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
12.
Sci Adv ; 6(24): eaba8399, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32577525

RESUMEN

Developing a vaccine to protect against the lethal effects of the many strains of coronavirus is critical given the current global pandemic. For Middle East respiratory syndrome coronavirus (MERS-CoV), we show that rhesus macaques seroconverted rapidly after a single intramuscular vaccination with ChAdOx1 MERS. The vaccine protected against respiratory injury and pneumonia and reduced viral load in lung tissue by several orders of magnitude. MERS-CoV replication in type I and II pneumocytes of ChAdOx1 MERS-vaccinated animals was absent. A prime-boost regimen of ChAdOx1 MERS boosted antibody titers, and viral replication was completely absent from the respiratory tract tissue of these rhesus macaques. We also found that antibodies elicited by ChAdOx1 MERS in rhesus macaques neutralized six different MERS-CoV strains. Transgenic human dipeptidyl peptidase 4 mice vaccinated with ChAdOx1 MERS were completely protected against disease and lethality for all different MERS-CoV strains. The data support further clinical development of ChAdOx1 MERS.


Asunto(s)
Inmunogenicidad Vacunal/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Vacunación , Vacunas Virales/administración & dosificación , Vacunas Virales/uso terapéutico , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Dipeptidil Peptidasa 4/genética , Femenino , Humanos , Inyecciones Intramusculares , Macaca mulatta , Masculino , Ratones , Ratones Transgénicos , Neumonía Viral/prevención & control , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Vacunas de ADN , Vacunas Virales/inmunología , Replicación Viral/inmunología
13.
bioRxiv ; 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32511340

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the COVID-19 pandemic3. Vaccines are an essential countermeasure urgently needed to control the pandemic4. Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.

14.
Nature ; 585(7824): 273-276, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32516797

RESUMEN

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Macaca mulatta/virología , Neumonía Viral/prevención & control , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Animales , Betacoronavirus/genética , Betacoronavirus/patogenicidad , Líquido del Lavado Bronquioalveolar/virología , COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Farmacorresistencia Viral , Femenino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Pulmón/virología , Masculino , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/patología , Neumonía Viral/fisiopatología , Neumonía Viral/virología , SARS-CoV-2 , Prevención Secundaria , Factores de Tiempo , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos
15.
Nat Microbiol ; 5(4): 562-569, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32094589

RESUMEN

Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2.


Asunto(s)
Betacoronavirus/fisiología , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/química , Betacoronavirus/clasificación , Antígenos CD13/metabolismo , COVID-19 , Línea Celular , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/metabolismo , Humanos , Mutación , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Neumonía Viral/metabolismo , Neumonía Viral/virología , Dominios Proteicos , Receptores de Coronavirus , Receptores Virales/química , Receptores Virales/genética , Proteínas Recombinantes de Fusión/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Tripsina/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(50): 25057-25067, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767754

RESUMEN

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.


Asunto(s)
Anticuerpos Neutralizantes , Virus Hendra , Proteínas Virales de Fusión , Internalización del Virus , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Línea Celular Tumoral , Glicosilación , Células HEK293 , Virus Hendra/química , Virus Hendra/inmunología , Virus Hendra/metabolismo , Virus Hendra/fisiología , Humanos , Modelos Moleculares , Unión Proteica , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/metabolismo
17.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20190017, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31401954

RESUMEN

The critical step in the emergence of a new epidemic or pandemic viral pathogen occurs after it infects the initial spillover host and then is successfully transmitted onwards, causing an outbreak chain of transmission within that new host population. Crossing these choke points sets a pathogen on the pathway to epidemic emergence. While many viruses spill over to infect new or alternative hosts, only a few accomplish this transition-and the reasons for the success of those pathogens are still unclear. Here, we consider this issue related to the emergence of animal viruses, where factors involved likely include the ability to efficiently infect the new animal host, the demographic features of the initial population that favour onward transmission, the level of shedding and degree of susceptibility of individuals of that population, along with pathogen evolution favouring increased replication and more efficient transmission among the new host individuals. A related form of emergence involves mutations that increased spread or virulence of an already-known virus within its usual host. In all of these cases, emergence may be due to altered viral properties, changes in the size or structure of the host populations, ease of transport, climate change or, in the case of arboviruses, to the expansion of the arthropod vectors. Here, we focus on three examples of viruses that have gained efficient onward transmission after spillover: influenza A viruses that are respiratory transmitted, HIV, a retrovirus, that is mostly blood or mucosal transmitted, and canine parvovirus that is faecal:oral transmitted. We describe our current understanding of the changes in the viruses that allowed them to overcome the barriers that prevented efficient replication and spread in their new hosts. We also briefly outline how we could gain a better understanding of the mechanisms and variability in order to better anticipate these events in the future. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Asunto(s)
Epidemias , Infecciones por VIH , Infecciones por Orthomyxoviridae , Pandemias , Infecciones por Parvoviridae , Animales , Animales Salvajes , Epidemias/veterinaria , VIH/fisiología , Infecciones por VIH/epidemiología , Infecciones por VIH/transmisión , Humanos , Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Pandemias/veterinaria , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/transmisión , Parvovirus Canino/fisiología
18.
PLoS Negl Trop Dis ; 13(6): e0007462, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170144

RESUMEN

Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.


Asunto(s)
Adenovirus de los Simios/genética , Portadores de Fármacos , Infecciones por Henipavirus/prevención & control , Virus Nipah/inmunología , Vacunas Virales/inmunología , Estructuras Animales/virología , Animales , Modelos Animales de Enfermedad , Femenino , Infecciones por Henipavirus/inmunología , Mesocricetus , Virus Nipah/genética , Análisis de Supervivencia , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
19.
PLoS Negl Trop Dis ; 12(11): e0006978, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30462637

RESUMEN

Nipah virus (NiV) infection can lead to severe respiratory or neurological disease in humans. Transmission of NiV has been shown to occur through contact with virus contaminated fomites or consumption of contaminated food. Previous results using the African green monkey (AGM) model of NiV infection identified aspects of infection that, while similar to humans, don't fully recapitulate disease. Previous studies also demonstrate near uniform lethality that is not consistent with human NiV infection. In these studies, aerosol exposure using an intermediate particle size (7µm) was used to mimic potential human exposure by facilitating virus deposition in the upper respiratory tract. Computed tomography evaluation found some animals developed pulmonary parenchymal disease including consolidations, ground-glass opacities, and reactive adenopathy. Despite the lack of neurological signs, magnetic resonance imaging identified distinct brain lesions in three animals, similar to those previously reported in NiV-infected patients. Immunological characterization of tissues collected at necropsy suggested a local pulmonary inflammatory response with increased levels of macrophages in the lung, but a limited neurologic response. These data provide the first clear evidence of neurological involvement in the AGM that recapitulates human disease. With the development of a disease model that is more representative of human disease, these data suggest that NiV infection in the AGM may be appropriate for evaluating therapeutic countermeasures directed at virus-induced neuropathogenesis.


Asunto(s)
Aerosoles/efectos adversos , Infecciones por Henipavirus/virología , Enfermedades del Sistema Nervioso/virología , Virus Nipah/fisiología , Aerosoles/química , Animales , Chlorocebus aethiops , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/inmunología , Humanos , Pulmón/inmunología , Pulmón/virología , Masculino , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/inmunología , Virus Nipah/química , Tamaño de la Partícula , Infecciones del Sistema Respiratorio/etiología , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología
20.
Cell Rep ; 24(7): 1730-1737, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110630

RESUMEN

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) likely originated in bats and passed to humans through dromedary camels; however, the genetic mechanisms underlying cross-species adaptation remain poorly understood. Variation in the host receptor, dipeptidyl peptidase 4 (DPP4), can block the interaction with the MERS-CoV spike protein and form a species barrier to infection. To better understand the species adaptability of MERS-CoV, we identified a suboptimal species-derived variant of DPP4 to study viral adaption. Passaging virus on cells expressing this DPP4 variant led to accumulation of mutations in the viral spike which increased replication. Parallel passages revealed distinct paths of viral adaptation to the same DPP4 variant. Structural analysis and functional assays showed that these mutations enhanced viral entry with suboptimal DPP4 by altering the surface charge of spike. These findings demonstrate that MERS-CoV spike can utilize multiple paths to rapidly adapt to novel species variation in DPP4.


Asunto(s)
Coevolución Biológica , Dipeptidil Peptidasa 4/química , Interacciones Huésped-Patógeno/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Sitios de Unión , Quirópteros , Chlorocebus aethiops , Cricetulus , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Expresión Génica , Especificidad del Huésped , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/genética , Receptores Virales/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA