Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Spine Surg Relat Res ; 7(3): 276-283, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37309490

RESUMEN

Introduction: Mechanical complications, such as rod fracture (RF) and proximal junctional kyphosis (PJK), commonly occur after adult spinal deformity (ASD) surgery. A rigid construct is preferred to prevent RF, whereas it is a risk factor for PJK. This controversial issue urged us to conduct a biomechanical study for seeking the optimal construct to prevent mechanical complications. Methods: A three-dimensional nonlinear finite element model, which consisted of the lower thoracic and lumbar spine, pelvis, and femur, was created. The model was instrumented with pedicle screws (PSs), S2-alar-iliac screws, lumbar interbody fusion cages, and rods. Rod stress was measured when a forward-bending load was applied at the top of the construct to evaluate the risk of RF in constructs with or without accessory rods (ARs). In addition, fracture analysis around the uppermost instrumented vertebra (UIV) was performed to assess the risk of PJK. Results: Changing the rod material from titanium alloy (Ti) to cobalt chrome (CoCr) decreased shearing stress at L5-S1 by 11.5%, and adding ARs decreased it by up to 34.3% (for the shortest ARs). Although the trajectory (straightforward vs. anatomical) of PSs did not affect the fracture load for UIV+1, changing the anchor from PSs to hooks at the UIV reduced it by 14.8%. Changing the rod material from Ti to CoCr did not alter the load, whereas the load decreased by up to 25.1% as the AR became longer. Conclusions: The PSs at the UIV in the lower thoracic spine, CoCr rods as primary rods, and shorter ARs should be used in long fusion for ASD to prevent mechanical complications.

3.
Spine Surg Relat Res ; 6(6): 681-688, 2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36561150

RESUMEN

Introduction: Adult spinal fusion surgery improves lumbar alignment and patient satisfaction. Adult spinal deformity surgery improves saggital balance not only lumbar lesion, but also at hip joint coverage. It was expected that hip joint coverage rate was improved and joint stress decreased. However, it was reported that adjacent joint disease at hip joint was induced by adult spinal fusion surgery including sacroiliac joint fixation on an X-ray study. The mechanism is still unclear. We aimed to investigate the association between lumbosacral fusion including sacroiliac joint fixation and contact stress of the hip joint. Methods: A 40-year-old woman with intact lumbar vertebrae underwent computed tomography. A three-dimensional nonlinear finite element model was constructed from the L4 vertebra to the femoral bone with triangular shell elements (thickness, 2 mm; size, 3 mm) for the cortical bone's outer surface and 2-mm (lumbar spine) or 3-mm (femoral bone) tetrahedral solid elements for the remaining bone. We constructed the following four models: a non-fusion model (NF), a L4-5 fusion model (L5F), a L4-S1 fusion model (S1F), and a L4-S2 alar iliac screw fixation model (S2F). A compressive load of 400 N was applied vertically to the L4 vertebra and a 10-Nm bending moment was additionally applied to the L4 vertebra to stimulate flexion, extension, left lateral bending, and axial rotation. Each model's hip joint's von Mises stress and angular motion were analyzed. Results: The hip joint's angular motion in NF, L5F, S1F, and S2F gradually increased; the S2F model presented the greatest angular motion. Conclusions: The average and maximum contact stress of the hip joint was the highest in the S2F model. Thus, lumbosacral fusion surgery with sacroiliac joint fixation placed added stress on the hip joint. We propose that this was a consequence of adjacent joint spinopelvic fixation. Lumbar-to-pelvic fixation increases the angular motion and stress at the hip joint.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA